Climate Resilient Transit Infrastructure Systems: Metrolinx and Flood Risk

Dr. Quentin Chiotti

Senior Advisor, Transportation Policy

Presentation at the *Resilient Infrastructure Systems in Ontario – A Focus on Climate Change and Water* workshop **SEPTEMBER 2019**

METROLINX

Mission

We connect our communities

Vision

Getting you there better, faster and easier

Values

Play as a team

Think forward

Serve with passion

REGIONAL TRANSIT NETWORK

METROLINX

* map includes existing and in delivery rapid transit projects

CLIMATE RESILIENT TRANSIT INFRASTRUCTURE SYSTEMS: METROLINX AND FLOOD RISK

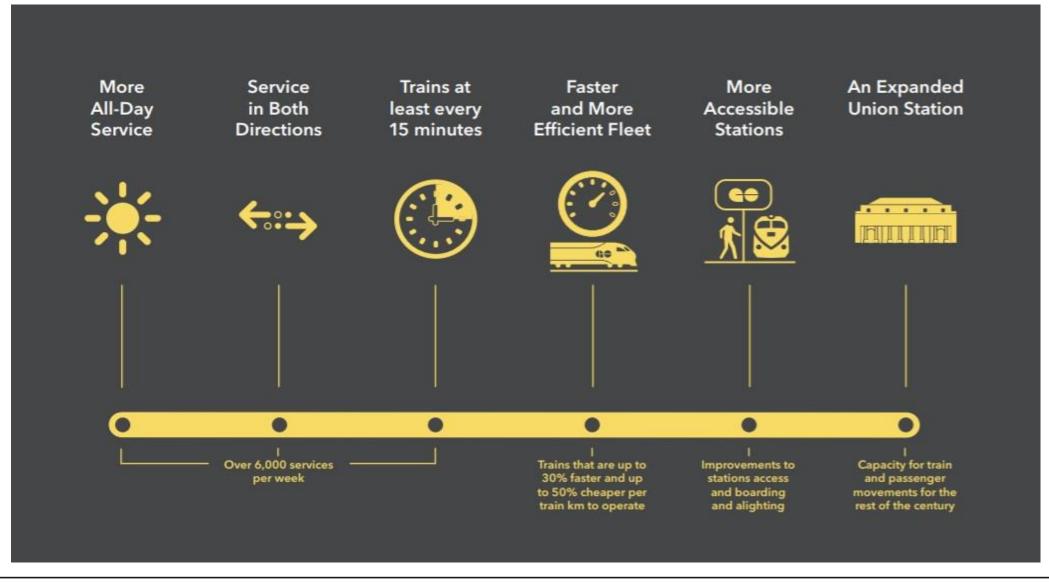
OUR SERVICES

- Serve a population of more than seven million across more than 11,000 square km stretching from Hamilton and Kitchener-Waterloo in the west to Newcastle and Peterborough in the east, and from Orangeville and Beaverton in the north to Niagara Falls in the south.
- In operation since 1967, GO now accommodates more than 70 million customer journeys a year.

- PRESTO is the smart card fare payment system seamlessly connecting 11 transit agencies across the GTHA and Ottawa.
- PRESTO replaces the need for tickets, tokens, passes or cash and always gets you the lowest fare.
- Later this year we're launching PRESTO Mobile that will allow thousands of customers to load funds and passes onto their cards, often with no wait times.

• UP Express connects the country's two busiest transportation hubs: Toronto Pearson International Airport and Union Station in downtown Toronto, offering a 25-minute journey from end to end, with trains departing every 15 minutes.

->>> METROLINX


BY THE NUMBERS 2018					
	GO RAIL	GO BUS	UP EXPRESS	PRESTO	
RIDERSHIP/ CUSTOMER*	56.5 million/yr 3.2% INCREASE 1968 Weekly Trips 15% INCREASE	16.7 million/yr 0.9% DECREASE** 13,939 Weekly Trips 0.7% DECREASE	3.5 million/yr 26.8% INCREASE 1,120 Weekly Trips 1.3% INCREASE	2.2 million Users 1 million Daily Taps 349 million annual taps 36% INCREASE	
PERFORMANCE	94 %***	94.5%***	98.3%***	97.6%****	
	77%	77%	72%	76%	
	78%	78%	80%	83%	

* The percentage difference for ridership/customers are a year-over-year comparison from 2016-17

** The decrease in bus ridership is due to the shift of customers to new all-day train services and the concurrent removal of train-bus services. The core regional GO bus services saw a ridership growth of 4.3% in the past year. *** On-time performance

**** Reliability of card readers on the TTC in May 2018

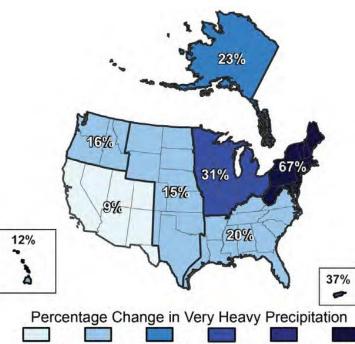
MORE GO TRAINS, LRTS AND BUSES ACROSS THE REGION

JULY 8TH 2013: A SEVERE WAKE UP CALL

BEST PRACTICES AND LESSONS LEARNED FROM THE UNITED STATES

Flooded Bus Barns and Buckled Rails:

Public Transportation and Climate Change Adaptation


AUGUST 2011

FTA Report No. 0001 Federal Transit Administration

FTA Office of Budget and Policy

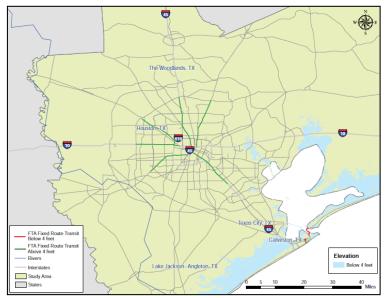
U.S. Department of Transportation Federal Transit Administration

0 - 10% 10 - 20% 20 - 30% 30 - 40% 40 - 50% >60% Updated from Groisman *et al.*¹¹³

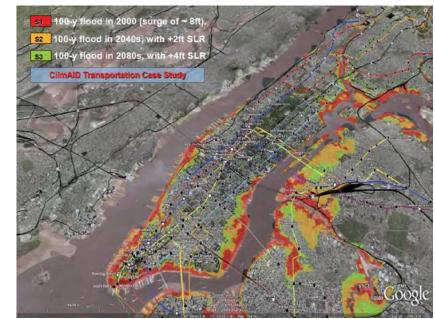
The map shows the percentage increases in very heavy precipitation (defined as the heaviest 1 percent of all events) from 1958 to 2007 for each region. There are clear trends toward more very heavy precipitation for the nation as a whole, and particularly in the Northeast and Midwest.

METROLINX

BEST PRACTICES: MAPPING SEA LEVEL RISE AND STORM SURGES ALONG COASTAL REGIONS


Figure 2-8

Impacts of Sea-Level Rise on Public Transportation in Alameda Study Region of San Francisco Bay Area Courtesy of Metropolitan Transportation Commission


Figure 2-10

Fixed Transit Guideways at Risk from Storm Surge at Elevations Currently Below 18 feet, Houston and Galveston, TX

Source: U.S. Department of Transportation, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, 2008

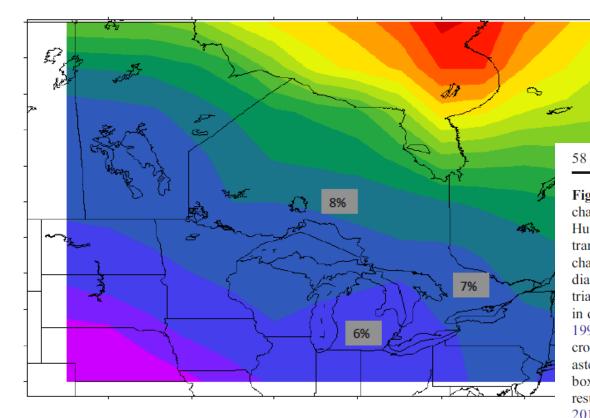
Figure 2-12: New York City Vulnerability to 2 to 4 feet of Sea-Level Rise with 100-year Storm Surge

Source: BCDC, Pacific Institute, AECOM, Georgrafika Consulting

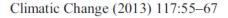
Houston

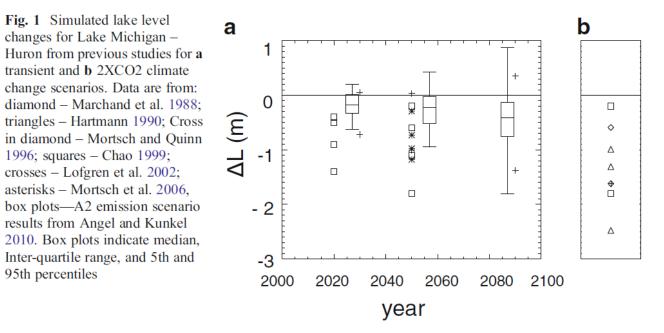
New York City

CLIMATE RESILIENT TRANSIT INFRASTRUCTURE SYSTEMS: METROLINX AND FLOOD RISK

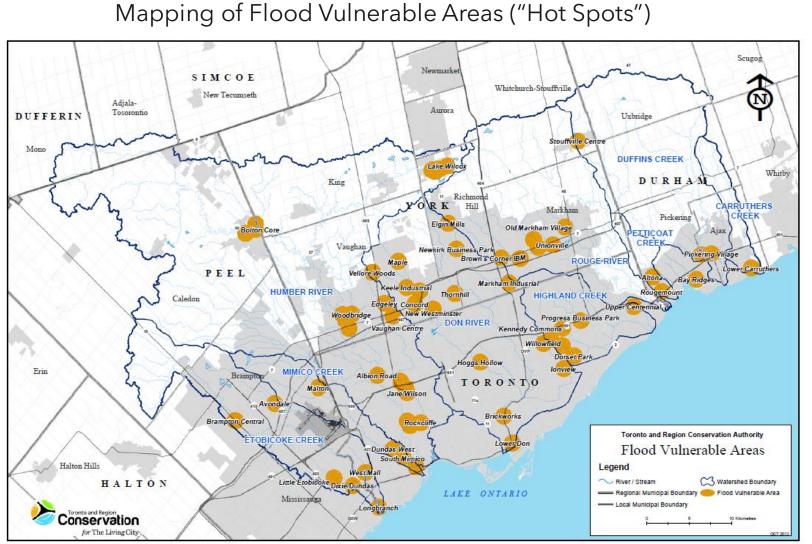

GREAT LAKES: LAKE LEVEL RISE AND STORM SURGES NOT AS BIG A CONCERN

19 18

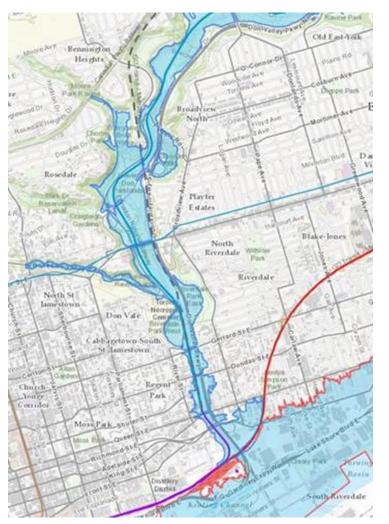

17 16


95th percentiles

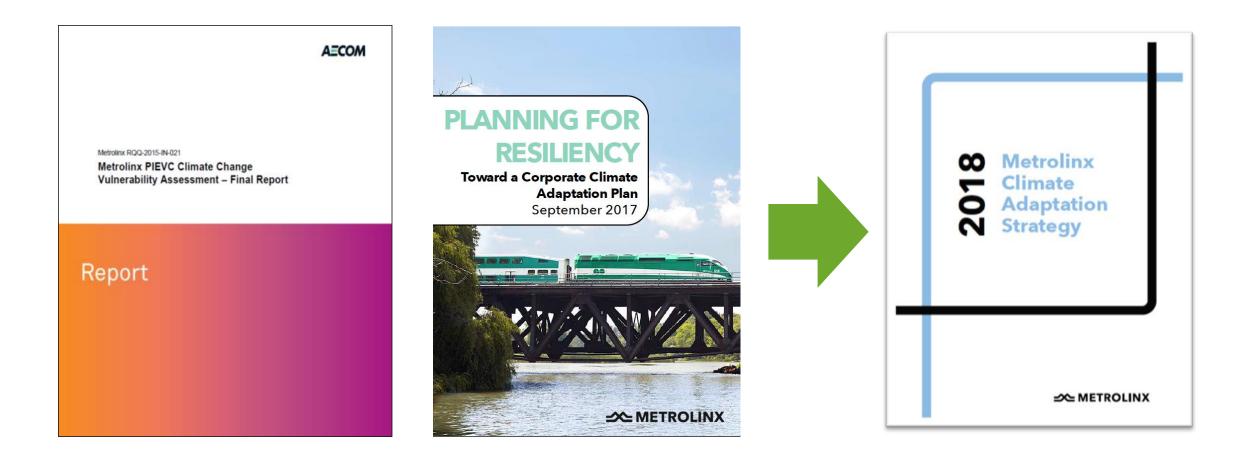
Annual Precipitation Change 2041-2070 Compared to Baseline



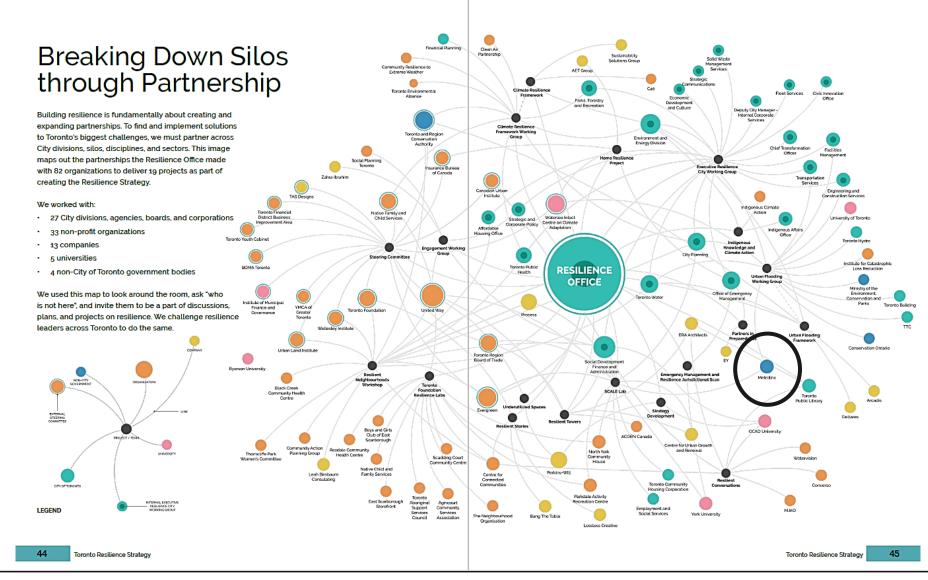
Projected Water Levels for LM-H



THE RISK TO RIVERINE FLOODING: TRCA EXAMPLE


Publically Accessible Flood Maps

CLIMATE RESILIENT TRANSIT INFRASTRUCTURE SYSTEMS: METROLINX AND FLOOD RISK


METROLINX'S JOURNEY TOWARDS BECOMING CLIMATE RESILIENT

METROLINX CLIMATE ADAPTATION STRATEGY: KEY ACTIONS RELATED TO FLOOD RISK - HIGHLIGHTED IN THE CITY OF TORONTO'S FIRST RESILIENCY STRATEGY

Key Action	Activity	Status
1.3.1 Engage Conservation Authorities to Obtain flood mapping data for the GTHA in GIS format and assess flood risk for existing and planned infrastructure assets across the Metrolinx network	Flood Exposure Study	Completed
1.3.2 Engage municipalities to estimate urban flood risk from different storm events and climate change projections, as well as estimates of the urban heat island effect	City of Toronto Flood Mitigation Working Group Lower Don Flood Mitigation Study	In Progress Kick-Off January 21 st , 2019
3.1.2 Prioritize culverts, bridges and embankments most vulnerable to climate extremes for increased monitoring and maintenance	CPG engagement of AECOM, taking projected climate changes in IDF statistics (25% increase)	Completed

ADDRESSING FLOOD RISK IS A SHARED RESPONSIBILITY

MEMBER OF THE CITY OF TORONTO'S FLOOD RESILIENCE WORKING GROUP

FLOOD RESILIENCE WORKING GROUP

CITY DIVISIONS

- Toronto Water
- Environment and Energy
- City Planning
- Transportation Services
- Engineering and Construction Services
- Toronto Building
- Resilience Office
- Facilities

AGENCIES

- Toronto Transit Commission
- Toronto Hydro

- Metrolinx
- Toronto and Region Conservation Authority

PROVINCIAL MINISTRY/ASSOCIATION

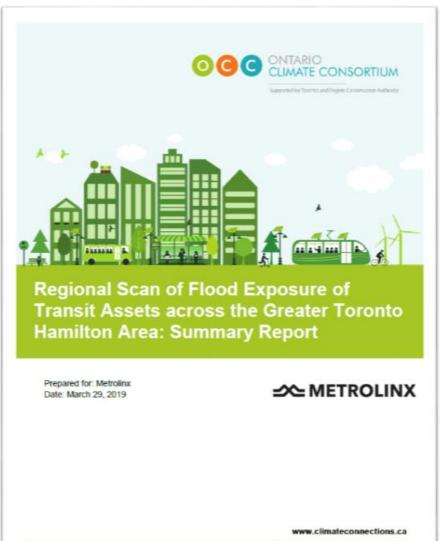
- Ministry of Environment, Conservation and Parks
- Conservation Ontario

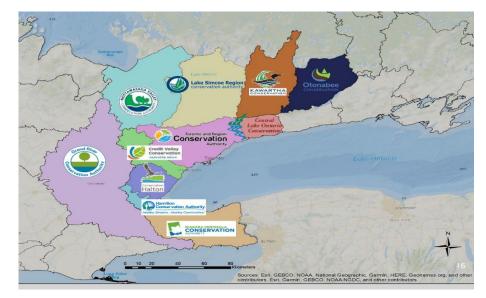
PRIVATE SECTOR/ACADEMIA

- Institute for Catastrophic Loss
 Reduction
- Intact Centre on Climate Adaptation
- University of Toronto

FLOOD RESILIENT TORONTO CHARTER

- Guide city planning, projects and programs based on greatest risk. Risk, taking vulnerability and impact into account, is to be assessed based on a social cost-benefit analysis considering physical flood hazards, social vulnerabilities and critical infrastructure.
- Use city-wide modelling to identify probability and impact of flooding, and map critical infrastructure, physical and social vulnerabilities. Produce an intuitive map that can be applied by multiple stakeholders.
- 3. Use risk mapping and forecasting to guide funding and deployment of operational resources. Operations staff and technology should be assigned geographically and funded


based on return on investment versus flood risk and achievable level of service.


- 4. Plan and fund capital projects based on the outputs of flood risk modelling, aligning investment with a social cost-benefit analysis accounting for return on investment and achievable level of service.
- Encourage new partnerships and innovative technical approaches; shift thinking towards flood resilience.
- 6. Collaborate locally, nationally and internationally, and demonstrate leadership in flood resilience.
- 7. Communicate flood risk to the public and stakeholders, and encourage residents and businesses to take action.

INFORMATION TO IMPROVE UNDERSTANDING AND INFORM DECISION MAKING

Type of Flood Risk	Geographical Scope	Assets
Flood Exposure: Riverine Flooding/Regulatory Storm Event	Network Wide	Existing and Future
Flood Risk: Changing Climate	Network Wide	Rail Corridors: culverts, bridges and embankments
Risk from Riverine and Urban/Stormwater Flooding: Changing Climate	Lower Don River	Bala Subdivision/Richmond Hill Rail Corridor
Risk from Urban/Stormwater Flooding: Changing Climate	Downtown Toronto	Union Station
Risk from Urban/Stormwater Flooding and Riverine Spills: Changing Climate	Network Wide	35 Asset Groups Existing and Future

FLOOD EXPOSURE: EXISTING AND FUTURE ASSETS

Asset Groups and Classes

1. General	4. Structures	6. Right of Way	8. Signals
Maintenance & Layover	Pedestrian Tunnel	At Grade Crossing	Wayside Inspection Unit
Facilities	Signal Bridge	Catch Basin	Warning Device
GO Train Stations	Retaining Wall	• Ditch	 Hazard Detector
Parking Lot	Rail Bridge	• Fence	Switch Machine
2. Power and Communications	Pedestrian Bridge	Inlet	Snow Clearing Device
e e i i i i i i i i i i i i i i i i i i	Culvert	Operation Sign	Signal Mast
 Traction Power Facility Parcels 			 Signal
Communications Tower			JU2 (Underground Cable Junction Case)
3. Track	5. Other	7. Mapped but not Tabled	Electric Lock
Track Segmentation (0.1 Mile)	GO Route	MX Office Locations	Ducts
• Turnout	GO Service Stop	Generator	Bungalow
		Transformer	
		Wheel Impact Load Detector/Monitor	
		SCADA Sensor	
		Pumping Station	
		Automatic Equipment Reader	

WHAT DOES FLOOD EXPOSURE MAPPING PROVIDE METROLINX?

For historical development

Identify where historical development is exposed to riverine flooding, where enhanced O & M, asset management, and monitoring may be

For future development

Guide future development away from areas where assets will be exposed to riverine flooding

For design standards

Identify where increased design standards are required for new infrastructure assets that need to be constructed within the

POTENTIAL USES FOR FLOOD EXPOSURE INFORMATION

- Can quickly inform (triage) what assets may require additional assessment or review based on flooding
- Can guide review of design, O & M plans, and Asset Management Plans to ensure that flood mitigation requirements and measures are being applied to assets

located within the flood plain

 Flood exposure metrics could be used to support the business case for reducing flood risk in future work

LESSONS LEARNED SO FAR

- Bringing information together in a GIS platform enables useful spatial analysis now and in the future
- Riverine flooding is a starting point for more comprehensive flood risk/vulnerability assessments
- Disseminate flood exposure information among Metrolinx staff as they use, require and interpret information from CAs (e.g. flood plain data)
- Building relationships now will make engagement easier in the future

NEXT STEPS

- Engage GGH Municipalities to assess overland/urban/stormwater flood risk
- Take into account interdependencies
- Address implications for Safety, Infrastructure Investment, Service Delivery
- Consider increased flood risk from a changing climate

METROLINX