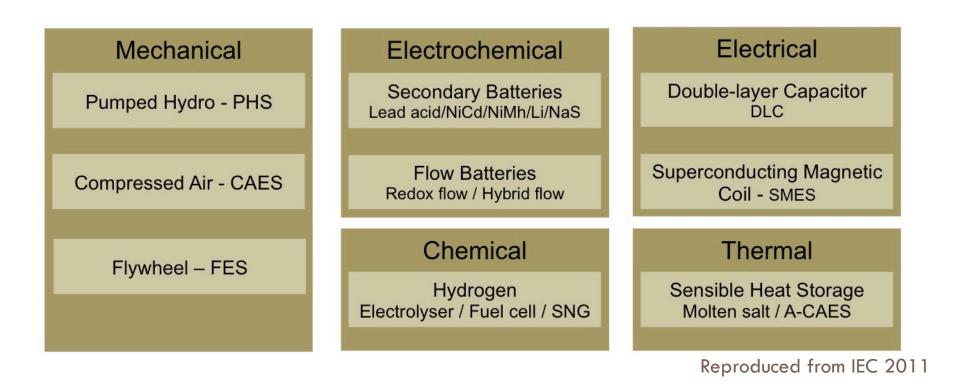


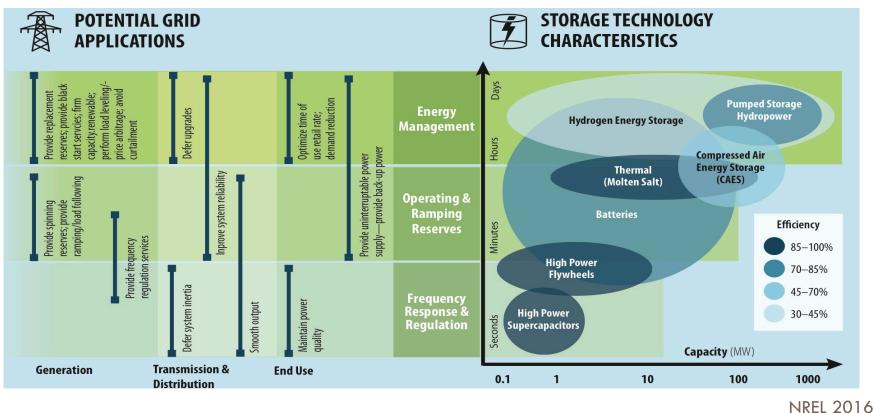
Energy Storage and Energy Policy Regime Change: A Comparative Analysis

Ontario Climate Consortium 5th Annual Symposium


Shahab Shokrzadeh, Ph.D., P.Eng. May 2017

Research Contributors:

- Mark Winfield Project Lead
- Shahab Shokrzadeh Post-Doctoral Fellow
- Adam Jones MES Student
- Amanda Gelfant MES Student
- Jenessa Doherty MES Student
- Adlar Gross CEKAP MES Student


Energy Storage Technologies

Electrical Energy Storage Systems

Potential Applications:

Balancing intermittent RE and DER = Disruptive applications

Socio-Technological Transitions Framework

Now encountering existing policy, regulatory, technological and institutional regimes

Focus of Research

🗖 <u>Canada</u>

Ontario (hybrid/organized market) – Adam's paper

- Alberta (organized market)/ASA Report
- BC, MB and QC (monopoly markets) + QC has plan on EV storage
- Federal (NRC Roadmap)

US - (working paper posted)

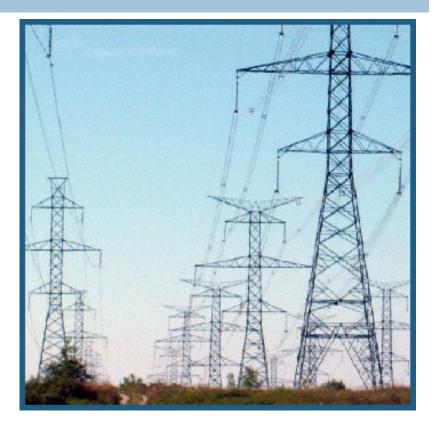
Some states (CA, NY, HI, TX) have single grid operator (RTO) within the state versus others governed by interstate operators and regulated by FERC

□ <u>EU</u>

- Germany (working paper posted)
- Denmark (working paper posted)

Policy Goals

- Transformation Storage useful set of services and capacities to have available to electricity systems (e.g. FERC, interstate RTOs, Ontario)
- Reconfiguration Storage as part of a low-carbon energy transition (e.g. Germany, California, Hawaii)
- Re-alignment of Energy System Storage as disruptive technology enabling distributed energy resources and BTM which may undermine conventional utility business and generation models.
- Economic development potential around technology (NRC, ASA, Mass, NJ, NY).


Policy Approaches

Policy approaches to energy technology development:

 Creating niches in <u>monopoly</u> (BC, Quebec, Manitoba)

VS.

 "Organized" markets (FERC regulated RTOs, CA, TX, NY, HI, ON, AB, Germany)

Policy Approaches

Monopoly markets

Development of technology (niche to regime transition) is at discretion of utility if found useful for ancillary services, balancing, avoided costs of deferred T&D infrastructure.

Organized markets

Theoretically are more open to new entrance to the markets, and are supposed to be technologically neutral.

Policy Approaches

Organized markets are theoretically more open to technological innovation:

- 3rd parties can develop/offer services/technologies to the energy market or the ancillary services, DSM, capacity/ reserves/balancing markets and be paid for those services.
- Market determines niche to regime transitions of technology/ services.
- Role of grid operator is more facilitative.

Organized Market Challenges

- Technical Barriers/Bidding Characteristics
 - Size, period of operation
- Ability to play multiple roles/provide services to multiple markets (generator, consumer, DR/DSM, ancillary services, capacity/balancing) not recognized/accommodated

Undermines multi-role business cases

- Lack of clearly defined rules around BTM aggregation
 - Who can do aggregation?
 - How paid?

Organized Market Challenges

- Key barriers embedded in market rules (the regime)
 Market design is for before ESS and other new technologies existed.
- Conceptual barriers around role of "technological neutrality"
- Ownership and control of storage resources by utilities, RTOs, LDCs vs. 3rd parties

Policy Directions

□ FERC (highlights):

- Ensure that electric storage resources are eligible to provide all capacity, energy and ancillary services;
- Incorporate bidding parameters reflecting the physical and operational characteristics of electric storage resources;
 - Establish a minimum size requirement for participation in the organized wholesale electric markets that does not exceed 100 kW.
- Ensure that electric storage resources are both seller and buyer in the wholesale market consistent with existing market rules.

BTM Aggregation

- FERC: Role of aggregators new form of market actor to manage and integrate behind-the-meter activities and distributed energy systems.
 - similar proposals in **Germany**.
- EDA: LDCs of the future will assume a critical function in Ontario's energy transition as a Fully Integrated Network Operator (FINO) that will enable, control and integrate distributed energy resources within its distribution service territory.

Contact Info:

Mark Winfield, PhD

Professor and Co-Chair Sustainable Energy Initiative Faculty of Environmental Studies, York University Email: <u>marksw@yorku.ca</u>

Phone: 416-736-2100- ext. 21078

Shahab Shokrzadeh, PhD, PEng

Postdoctoral Fellow Sustainable Energy Initiative Faculty of Environmental Studies, York University Email: <u>shokrzad@yorku.ca</u> Phone: 416-736-2100- ext. 44035