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Objective

Gradually move Ontario from its current electricity configuration to a 100%
renewable system

Challenge: integrating wind and solar resources with their variable nature

Focus on the electricity system design, from an operational perspective:

* Understand the interactions between flexibility resources:
e Demand response (DR)
e Storage assets (PHS)
e Curtailment

e Quantify costs & GHG emissions

e Understand the implications of system design on system operation:
* Baseload generation
* Market design



The SILVER Model

e Production cost model with mixed-integer linear formulation
e Unit commitment, economic dispatch, and optimal power flow

e Grid operators scale
e Spatially — Ontario’s balancing area
e Electricity only — other energy carriers can be indirectly quantified
e Hourly temporal resolution

e Scenario design approach:
e Test twelve scenarios — full Ontario system to 100% RE

e Analysis: annual electricity system dispatch
e Flexibility requirements
* Costs
* GHG emissions



Ontario’s resources and existing assets
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Ontario transformation: twelve scenarios
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* Phase out natural gas and nuclear
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Flexibility resource utilization & curtailment rates
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Demand response utilization rates
* Increase relatively consistent increase with VRE penetration
 Reaching maximum utilization rates at about 70% VRE penetration ;



Flexibility resource utilization & curtailment rates
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Storage utilization rates:
 Lower than demand response utilization rates at all VRE penetrations
 Near-zero for VRE penetrations < 50%
e Catches up at higher VRE penetrations, drawing down curtailment ’



Flexibility resource utilization & curtailment rates
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Curtailment rates
* |ncrease consistently with VRE penetration to ~50% VRE penetration
* Plateau for VRE penetrations > 50% when storage utilization increases_



Cost {$ billions]
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*Non-smooth decrease in GHG emissions is a red-flag for
specific grid configurations



Follow-up exploration:

How should we design the electricity system to effectively accommodate
high penetrations of renewable resources?

e System configuration design: flexibility

e Electricity market design: remuneration mechanisms for storage assets



System flexibility

* Percentage of must-run baseload generation

e High start-up costs plus long minimum off times >> must-run baseload
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System flexibility

e Impact on curtailment > system with and without storage
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. Storage assets draw down curtailment to some extent

. System flexibility has a larger impact

. Curtailment increase non-linearily as flexibility decreases
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Storage Utilization Capacity Factor [%)]

System flexibility

What about utilizing storage to add flexibility?
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Storage is limited in is ability to add
flexibility to a high-VRE, high-baseload
system

Flexible system: storage is utilized a lot to
mitigate VRE variability

Inflexible systems: storage utilization plateaus
for higher VRE penetrations

* Energy perspective: PHS Storage assets
can’t mitigate annual over-generation

e Cost perspective: Storage can’t reduce
costs by dispatching low-marginal cost
(VRE generation) because of high-marginal

cost assets are must-run i,



Remuneration
mechanism:

How are storage
assets remunerated
by the electricity
market?

Impact on dispatch
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Operator asset: no

explicit pumping or
generating cost

Fixed contract payments:

generation from storage
asset is paid fix price
(like a FIT)

Spot market prices:
storage asset pays hourly
market price for

pumping
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Market design: Storage remuneration mechanism

* Impact on curtailment
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 Depend strongly on system flexibility

e Remuneration mechanism has larger impact in inflexible system
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Modelling conclusions:

* The 100% renewable electricity system operates

e High utilization rates of demand response and storage assets
e For VRE penetrations greater than 50% storage utilization increases rapidly

DR and storage assets ‘compete’ to draw down curtailment
e Storage utilization increases when DR resources are reaching their limit

e GHG emissions local maxima under increasing VRE penetrations
e Natural gas replaces nuclear, and in doing so increasing GHG emissions



Policy implications moving forward

e Electricity system design:
o System flexibility plays a large role in both curtailment rates and flexibility utilization rates
Phasing in wind and solar needs to be accompanied by phasing out inflexible generators

The relative balance of nuclear, gas, and renewable (not just renewable penetration) impacts GHG-emissions
Perform operational modelling of proposed grid configurations before committing to capital investments

Need to be strategic about the electricity grid configuration to make renewable integration effective

 Market design:

e Competition between DR, PHS, and EV depend on respective remuneration mechanism
* Net load curve variability drives assets with fixed price remuneration
» System marginal price variability drives assets performing price arbitrage

e Future policies should account for this competition and sensitivity to remuneration mechanism
* Alonger dispatch planning horizon will encourage better utilization of flexibility resources

* Prioritize effective strategies for including novel flexibilities on the electricity market



Thank youl!

madeleine.mcpherson@mail.utoronto.ca
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