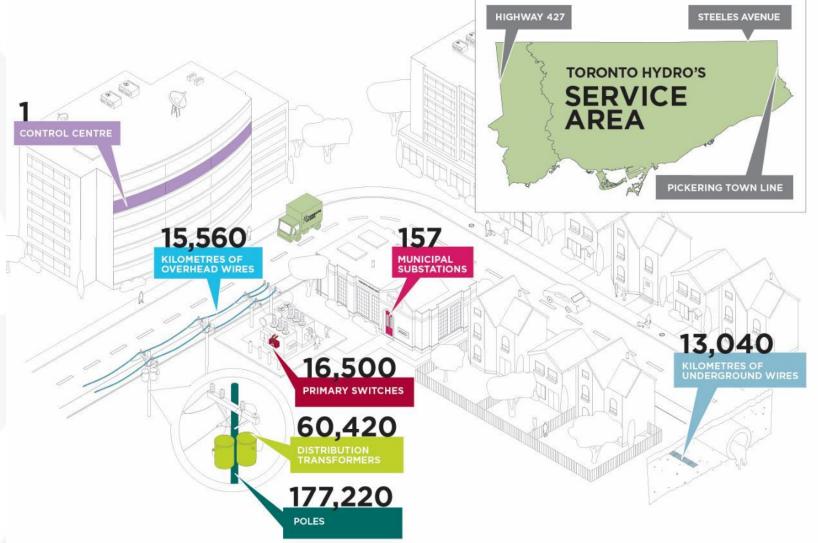
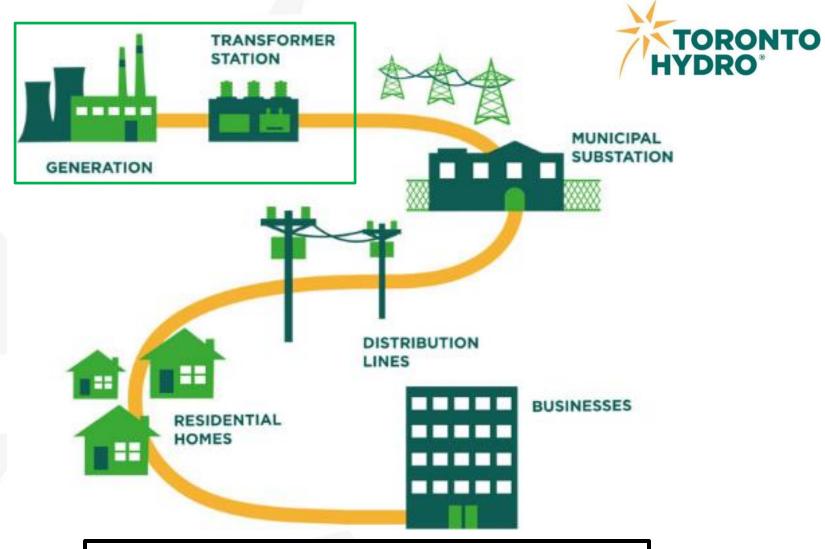
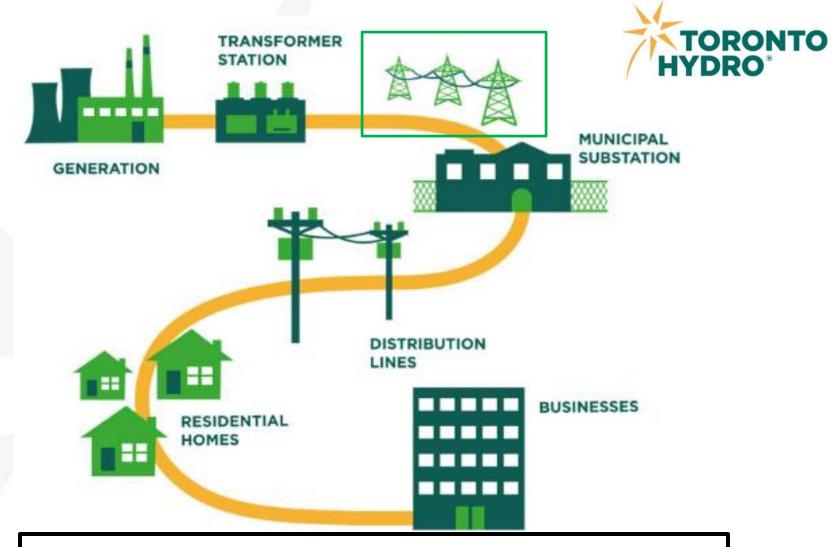

Enhancing Resilience to Climate Change

Rob McKeown
Engineer, Standards & Policy Planning
Engineering & Construction Division


Ontario Climate Consortium April 26th, 2017 Ontario Science Centre





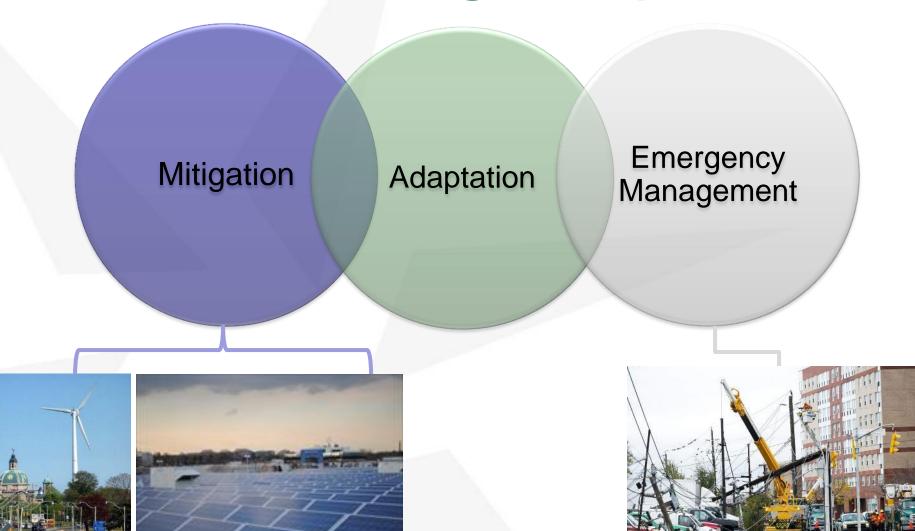
Generation

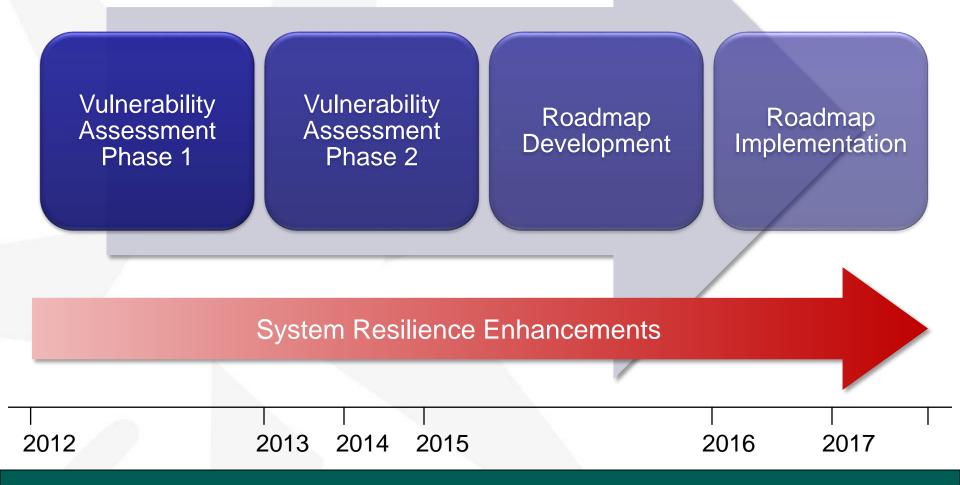
In Ontario, 70% of electricity is generated by Ontario Power Generation. This provincially-owned organization has generating stations across the province that produce electricity from hydroelectric, nuclear and fossil fuel sources



Transmission

Once electricity is generated, it must be delivered to urban and rural areas in need of power. This happens through high voltage transmission lines that serve as highways for electricity. There are approximately 30,000 km of transmission lines in Ontario and the majority are owned by Hydro One.



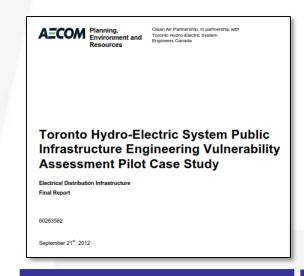

Distribution

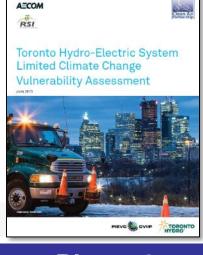
Toronto Hydro is responsible for the last step of the journey: distributing electricity to customers in Toronto.

Source: news.nationalpost.co

July 2013 – Extreme rainfall (126mm in 2 hrs)

325,000 customers impacted Flooding of station control equipment


ıdmap nentation


2012 2013 2014 2015 2016 2017

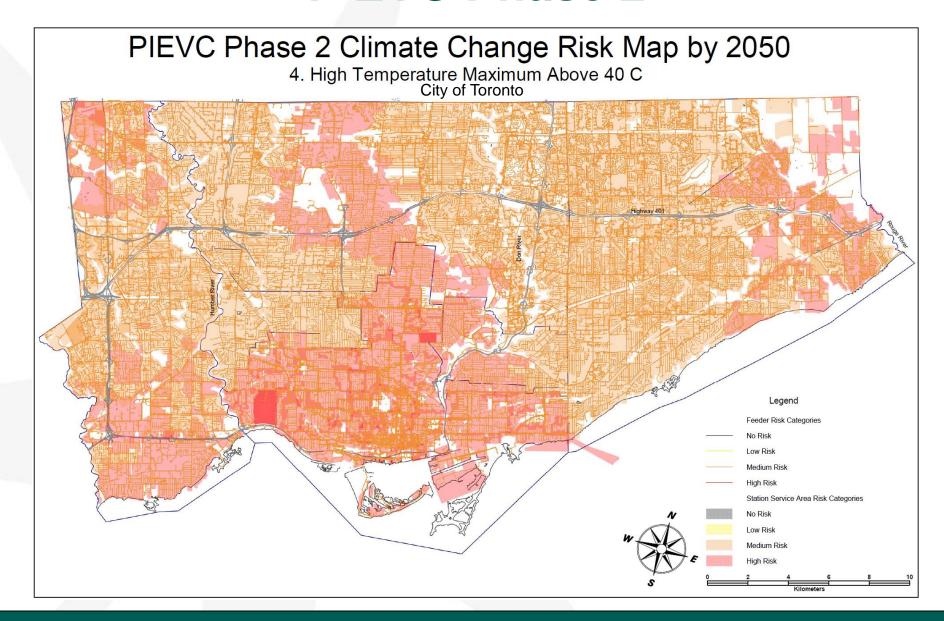
Climate Change Vulnerability Assessment

- Engineers Canada's
 Public Infrastructure
 Engineering Vulnerability
 Committee (PIEVC)
 Engineering Protocol
- Consortium: AECOM,
 City of Toronto, Clean
 Air Partnership,
 Engineers Canada, Risk
 Sciences International...
- NRCan funding
- Available at: www.pievc.ca

Phase 1

- Pilot case study
- Current climate only
- Small portion of distribution system
- Completed Sept 2012

Phase 2


- 2010-2050, 20 climate parameters
- Entire distribution system
- Completed June 2015

PIEVC Phase 2

Table ES-1 Climate Parameters and Probability of Occurrence

	Climate Parameter 25°C	Annual Probability (Historical; Projected 2030's and <i>2050's</i>) 66 per year; 84 per year , <i>106 per year</i>	Probability of Occurrence Study Period (2015-2050) 100%		
Daily Maximum	30°C	16 per vear: 26 per vear . 47 <i>per vear</i>	100%		
40°C		~0.01 per year; 0.3 to 2 days per year, 1-	7 days per year		
High Daily Avg. Temperature	30°C	0.07 per year; N/A, 1.2 days per year	~100%		
Heat Wave	3 days max temp over 30°C	0.88 per year; >1 for both	100%		
High Nighttime	Nighttime low ≥23°C	0.70 per vear: 7 per vear , 16 per vear	~100%		
100 mm in <	1 day + antecedent	0.04 per year; extreme precipitation expected ↑,			
15 mm (tr	ee branches)	0.11 per year; >0.13 per year, >0.16 per year			
25 mm ≈ 12.5 mm radial		0.06 days per year; >0.07 per year, >0.09 per year			
		Upper bound of estimate:			
70 km/h+ (tree branches)		21 days per year; N/A, 24 to 26 per year			
90 km/h		2 days per year; N/A, >2.5 per year			
120 km/h		~0.05 days per year; <i>likely</i> ↑, bu	ut % unknown		
Lightning	Flash density per km km²	1.12 to 2.24 per year per km²; Expected increase, % change unknown	~50-70%(Lg); ~10-20% (Sm)		
Snowfall	Days w/ >10 cm	1.5 days per year, Trend decreasing but highly variable	100%		
SHOWIGH	Days w/ > 5cm	5 days per year, Trend decreasing but highly variable	100%		
Frost		229 frost free days; 249 frost free days , 273 frost free days 100%			

PIEVC Phase 2

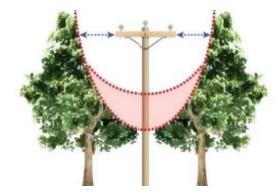
Vulnerability Assessment Adaptation Opportunities

- Infrastructure strengthening
- Capacity planning
- Inspection and maintenance programs
- Data collection and quality

Ongoing System Resilience Enhancements

Capital & Maintenance Programs

Rear Lot Conversion


Overhead Infrastructure Relocation

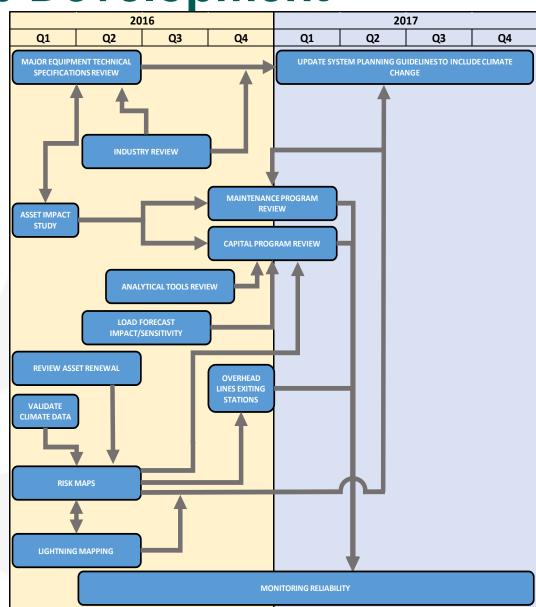
Tree Trimming Standards

Ongoing System Resilience Enhancements New Technologies

Breakaway Connectors

Stainless Steel
Submersible
Transformers

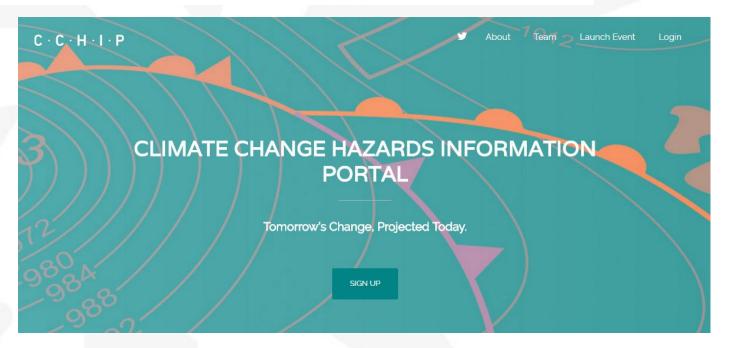
Solid Dielectric Submersible Transformers


- Multi-disciplinary team
- Looking at data, analysis tools, investment programs, standards,...
- Develop initiatives to help make system more resilient

4 SECTOR PERSPECTIVES AND PRACTICES ON ADAPTATION

- B. BRIDGING THE GAP: TOOLS TO INTEGRATE ADAPTATION INTO INVESTMENT PLANNING
- 1. CEA'S CLIMATE CHANGE ADAPTATION MANAGEMENT PLANNING GUIDE
- 2. ENGINEERS CANADA'S PUBLIC INFRASTRUCTURE ENGINEERING VULNERABILITY COMMITTEE'S PROTOCOL

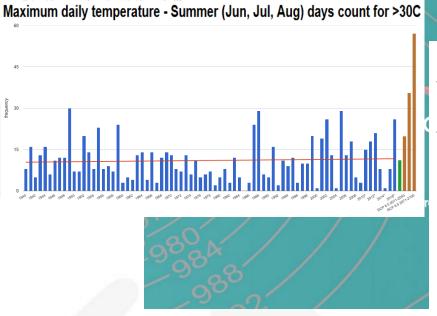
- Climate data validation
- Asset lifecycle
- Equipment specifications
- Capital and maintenance programs
- Planning data, tools, guidelines
- Design practices
- Construction standards

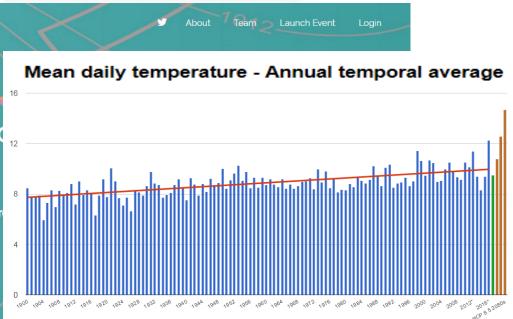

Validate Climate Data

CEA'S CLIMATE CHANGE ADAPTATION MANAGEMENT PLANNING GUIDE

2.2 Determine Future Projections:

To adapt to climate change impacts the expected changes must first be understood. Much of the existing infrastructure that is climate sensitive was designed using statistics on past climate and risk that may not be representative of future climate risks. Climate conditions are projected to change on an ongoing basis for the foreseeable future. To plan for future conditions they must be understood.


Validate Climate Data



CEA'S CLIMATE CHANGE ADAPTATION MANAGEMENT PLANNING GUIDE

2.2 Determine Future Projections:

To adapt to climate change impacts the expected changes must first be understood. Much of the existing infrastructure that is climate sensitive was designed using statistics on past climate and risk that may not be representative of future climate risks. Climate conditions are projected to change on an ongoing basis for the foreseeable future. To plan for future conditions they must be understood.

Validate Climate Data

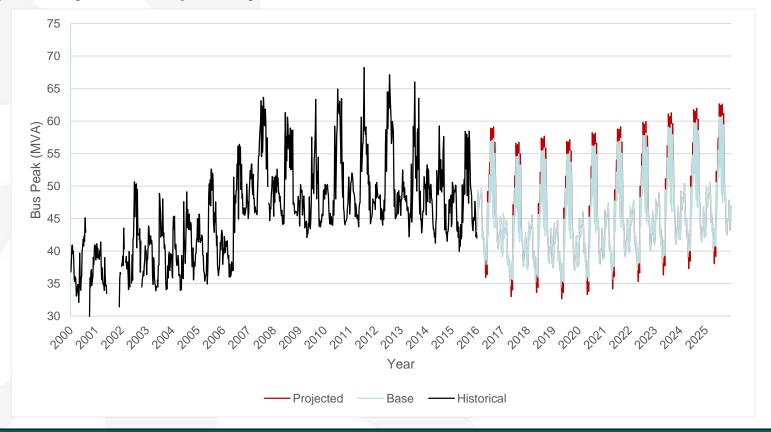
Historical Climate Data

- Environment and Climate Change Canada (ECCC)
- Natural Resources Canada


Climate Projection Data within CCHIP

- Suite of models used
- Fifth Coupled Model Intercomparison Project (CMIP5), coordinated by the World Climate Research Program.
- List of models available on the website

CLIMATE CHANGE HAZARDS INFORMATION
PORTAL
Tomorrow's Change Projected Today.


Load Forecast Impact/Sensitivity

- Station Load Forecast report is prepared annually
- Used for the purpose of evaluating station bus capacity adequacy

Load Forecast Impact/Sensitivity

- Station Load Forecast report is prepared annually
- Used for the purpose of evaluating station bus capacity adequacy

Major Equipment Specifications

- Technical Specifications for Major Equipment
- Codes, Standards and Regulations typically use historical values.
- Review specifications,
 investigate impacts of climate
 projections and revise as
 necessary.

TORONTO HYDRO

TECHNICAL SPECIFICATION FOR

SINGLE PHASE SUBMERSIBLE DISTRIBUTION TRANSFORMERS

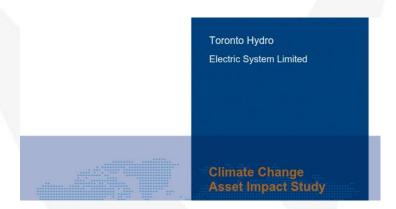
13.860Y/8000 - 240/120 OR 8000/13860Y - 34

KNAN TYPE

NO. DT-108-7R2

2.2 Codes, Standards and Regulations

CSA Standards


C301.1

C2.1	Single Phase and three-phase liquid-filled distribution transformers
C50	Mineral insulating oil, electrical, for transformers and switches
C802.1	Minimum Efficiency Values for Liquid-Filled Distribution Transformers
CAN3-108.3.1-1987	Limits and measurements methods of electromagnetic noise from Alpower system 0.15-30 MHz - Third Edition
IEEE Standard	
C57.12.90	Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers and Guide for Short-Circuit Testing of Distribution and Power Transformers
C57.12.23	IEEE Standard for Submersible Single-Phase Transformers: 167 kV/ and Smaller; High Voltage 25 000 V and Below; Low Voltage 600 V and Below
ANSI\IEEE 386	Separable Insulated Connectors for Power Distribution Systems Above

Single-phase submersible distribution transforms

4.1.3 As the transformer enclosure may be subjected to flooding or to high water tables, the transformer including its terminations shall be capable of continuous unattended operation while continuously submerged under a head of 3 m (10 ft) of water. Manual operation of certain accessories may require that the water level be lowered below the top of the transformer prior to operation.

Asset Impact Study

- Transformers vs temperature
- Poles vs climatic loads
- Overhead conductors vs climatic loads
- Underground cables vs extreme rainfall
- Overhead conductors vs temperature

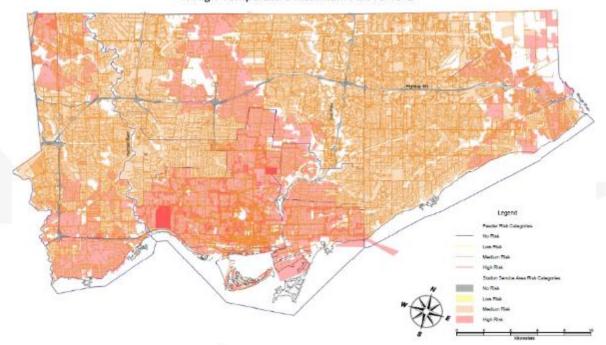

	V	r e	,	
Loads	2 ACSR (installed @1000N)	3/0 ACSR	336.4 ASC	556.5 ASC
C22.3 heavy weather loading 12.5 mm ice radial, 400 Pa, -20 °C	46 %	30 %	34 %	32 %
100 kg (large branch) 15 mm ice total, 0 °C	67 %	38 %	41 %	33 %
300 kg (limb) 15 mm ice total, 0 °C	128 %	67 %	79 %	60 %
600 kg (small tree) 15 mm ice total, 0 °C	199 %	113 %	122 %	92 %
	TREEPROOF 3/0 ACSR 15 kV	TREEPROOF 3/0 ACSR 25 kV	TREEPROOF 336.4 ASC 15 kV	TREEPROOF 556.5 ASC 25 kV
C22.3 heavy weather loading 12.5 mm ice radial, 400 Pa, -20 °C		3/0 ACSR	336.4 ASC	556.5 ASC
12.5 mm ice radial,	3/0 ACSR 15 kV	3/0 ACSR 25 kV	336.4 ASC 15 kV	556.5 ASC 25 kV
12.5 mm ice radial, 400 Pa, -20 °C 100 kg (large branch)	3/0 ACSR 15 kV	3/0 ACSR 25 kV 29 %	336.4 ASC 15 kV 35 %	556.5 ASC 25 kV 32 %

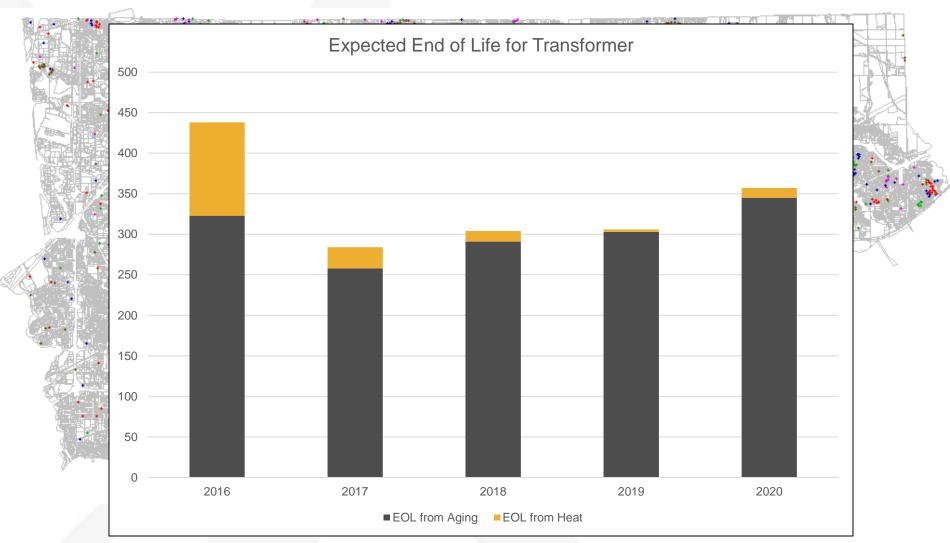
Table 16: Cable % RTS according falling vegetation loading

Risk Maps

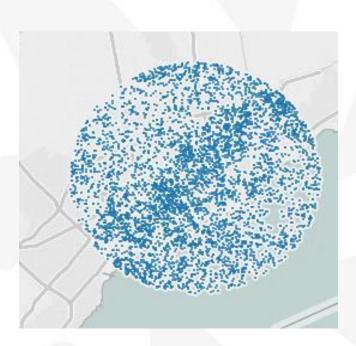
PIEVC Phase 2 Climate Change Risk Map by 2050

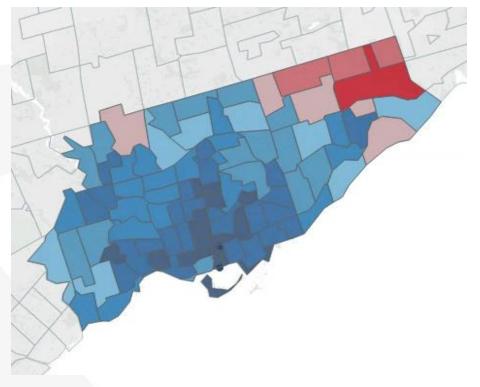
4. High Temperature Maximum Above 40 C

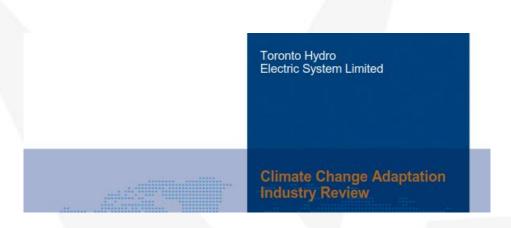
- Risks maps were completed at a high level
- Narrow down to asset level to be more useful to planning teams


Risk Maps

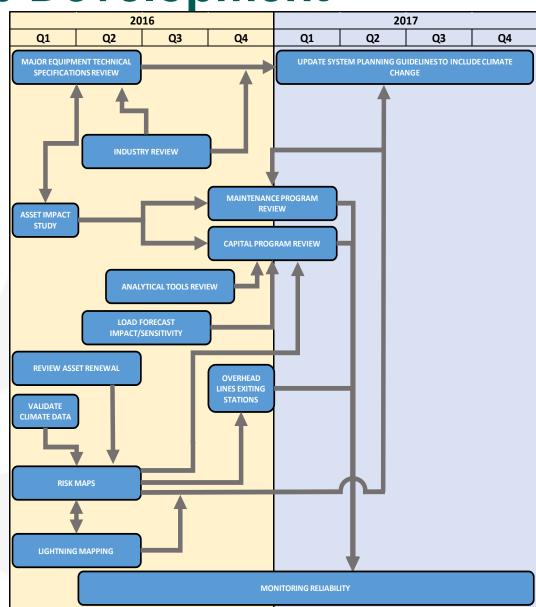
Transformers at End of Life for 2016 - 2020


Risk Maps


Transformers at End of Life for 2016 - 2020


Lightning Mapping

- Lightning strike data over the last 20 years has been mapped across the city
- Correlation with system outage information will continue in 2017


Industry Review

- Review practices of major utilities in Canada and USA
- Paper review on industry best practices

2.	CLIMATE CHANGE ADAPTATION - NORTH AMERICAN UTILITIES				
		VIEW			
		HYDRO-QUEBEC			
	2.2	MANITOBA HYDRO	7		
	2.3	CANADA MARITIME PROVINCES (PEI, NB, NS AND NFL)	10		
	2.4	FORTISBC	10		
	2.5	BC HYDRO	11		
	2.6	SASKPOWER	12		
	2.7	ONTARIO	13		
	2.8	POWERSTREAM	15		
	2.9	CON EDISON	4		
	2.10	PSEG LONG ISLAND (LIPA)	46		
	2.11	PSEG - NEW JERSEY	5		
	2 42	NEW JERSEY BOARD OF PUBLIC UTILITIES			
		CONNECTICUT LIGHT AND POWER (EVERSOURCE)			
		FLORIDA POWER & LIGHT			
		CITY OF OCALA UTILITY SERVICES.			
		OKLAHOMA GAS AND ELECTRIC (OGE)			
		SUMMARY OF LARGE UTILITY HARDENING EXPENDITURES			
3.	CL	IMATE CHANGE ADAPTATION - PAPER REVIEW	63		
		BEST PRACTICES IN VEGETATION MANAGEMENT (TEXAS)			
		ICE RESISTANT TREE POPULATIONS - (TREES AND ICE STORMS – SECOND EDITION)			
		MEA REPORT - DESIGN AND COMPONENT FAILURE ANALYSIS FROM THE 1998 ICE STORM (2000)			
	3.4	MEA REPORT - EFFECTIVENESS OF MAINTENANCE PRACTICES AND RETROFIT DESIGNS IN IMPROVING DISTRIBUTION SYSTEM RELIABILITY			
	3.5	TD WORLD STORM HARDENING ARTICLE (QUANTA TECHNOLOGIES)	6		
	3.6	EDISON ELECTRIC INSTITUTE - BEFORE AND AFTER THE STORM (2014)	6		
	3.7	HARDENING AND RESILIENCY- U.S. ENERGY INDUSTRY RESPONSE TO RECENT	7		

- Climate data validation
- Asset lifecycle
- Equipment specifications
- Capital and maintenance programs
- Planning data, tools, guidelines
- Design practices
- Construction standards

Disclaimer

The information in these materials is based on information currently available to Toronto Hydro Corporation and its affiliates (together hereinafter referred to as "Toronto Hydro"), and is provided for information purposes only. Toronto Hydro does not warrant the accuracy, reliability, completeness or timeliness of the information and undertakes no obligation to revise or update these materials. Toronto Hydro (including its directors, officers, employees, agents and subcontractors) hereby waives any and all liability for damages of whatever kind and nature which may occur or be suffered as a result of the use of these materials or reliance on the information therein. These materials may also contain forward-looking information within the meaning of applicable securities laws in Canada ("Forward-Looking Information"). The purpose of the Forward-Looking Information is to provide Toronto Hydro's expectations about future results of operations, performance, business prospects and opportunities and may not be appropriate for other purposes. All Forward-Looking Information is given pursuant to the "safe harbour" provisions of applicable Canadian securities legislation. The words "anticipates", "believes", "budgets", "could", "estimates", "expects", "forecasts", "intends", "may", "might", "plans", "projects", "schedule", "should", "will", "would" and similar expressions are often intended to identify Forward-Looking Information, although not all Forward-Looking Information contains these identifying words. The Forward-Looking Information reflects the current beliefs of, and is based on information currently available to, Toronto Hydro's management. The Forward-Looking Information in these materials includes, but is not limited to, statements regarding Toronto Hydro's future results of operations, performance, business prospects and opportunities. The statements that make up the Forward-Looking Information are based on assumptions that include, but are not limited to, the future course of the economy and financial markets, the receipt of applicable regulatory approvals and requested rate orders, the receipt of favourable judgments, the level of interest rates, Toronto Hydro's ability to borrow, and the fair market value of Toronto Hydro's investments. The Forward-Looking Information is subject to risks, uncertainties and other factors that could cause actual results to differ materially from historical results or results anticipated by the Forward-Looking Information. The factors which could cause results or events to differ from current expectations include, but are not limited to, the timing and amount of future cash flows generated by Toronto Hydro's investments, market liquidity and the quality of the underlying assets and financial instruments, the timing and extent of changes in prevailing interest rates, inflation levels, legislative, judicial and regulatory developments that could affect revenues, and the results of borrowing efforts. Toronto Hydro cautions that this list of factors is not exclusive. All Forward-Looking Information in these materials is qualified in its entirety by the above cautionary statements and, except as required by law, Toronto Hydro undertakes no obligation to revise or update any Forward-Looking Information as a result of new information, future events or otherwise after the date hereof.

Questions

Rob McKeown, P.Eng.
Standards and Policy Planning
Toronto Hydro-Electric System Limited
rmckeown@torontohydro.com

