Climate Data Training Session for Municipal and Conservation Authority Engineers, Planners and Decision Makers Ontario Science Centre - April 26, 2017

## Evidence-Based Policy, Programs and Design Standards in Municipal Engineering to Adapt to Extreme Weather and Climate Change

Robert J. Muir, M.A.Sc., P.Eng. Manager, Stormwater, City of Markham

Blogger in Chief: <u>www.CityFloodMap.com</u> Contributor: <u>Open During Construction</u> Podcast on iTunes Twitter: <u>@RobertMuir\_PEnq</u>

# Outline

- Data-driven, Evidence-based Risk Management:
  - Policy, Programs, Priorities for Remediation
  - Design Practices & Resiliency for New Development
- Responding to Non-technical Reports & Media
- Quantifying Risk Factors and Design Practice Adaptation
  - Hydrology intensification, return period safety factors
  - Meteorology critical hyetographs selection, past IDF trends & climate change projections (safety factors & stress tests)

## Stress Tests for System Resiliency Future IDF

- PCSWMM minor and major system hydrologic/hydraulic assessment
- InfoWorks sanitary surcharge / basement back-up assessment
- Adaptation Measures (municipal & private)





## History of Flooding & Known Design Limitations Drive Policy, Programs and Priorities for Risk Reduction







### West Thornhill – August 19, 2005 (> 100 year)















## Don Mills Channel August 19, 2005



## **Where Priorities for Risk Mitigation ?**



## What Are Program Level of Service Targets ?







### Various 2005 Flooding Types in Pre-1980 Areas



#### BUILDING MARKHAM'S MARKHAM Overland Flood Sanitary **Plains** Drainage Pre - 1960 Partially Uncontrolled Enclosed / Separated Inflows **Encroached Standards** High I&I \$ P P 100 Year Post -1980 Fully Dual Separated **Preserved** Post 1980 **Standards** Drainage Low I&I design standards limit flood risks (storm, sanitary, & riverine) St. longe **Steeles Ave. East**

9





### **Post-1980's Design Standards Are Effective**



Flooded









## Responding to Non-Technical Reports & Media





## Media & Government Data Gaps

- Operational issues mis-characterized as a climate change-induced event.
- Reported "unprecedented" conditions contradict past data & reports.



http://www.cityfloodmap.com/2015/12/stranded-metrolinx-go-train-avoidable.html





## **Insurance Industry Data Gaps**



<u>Telling the Weather Story - Gordon McBean - Empire Club presentation - YouTube</u>

http://www.slideshare.net/RobertMuir3/storm-intensity-not-increasing-factual-review-of-engineering-datasets 14





BUILDING MARKHAM'S

(M<u>ARKHAM</u>





#### Losses normalized by net written premiums peaked in '98





\* Catastrophic Losses in 2015 Dollars and NWP (1992-2015) per IBC 2016 Fact Book, NWP (1990-1991) per IBC 2013 Fact Book, NWP 1983-1989 extrapolated assuming 2% growth per year.

link: Net Written Premiums to 2015 link: NWP 1990-1991

http://www.cityfloodmap.com/2016/12/book-review-rightful-place-of-science.html

MARKHAM





## Quantifying Risk Factors and Design Practice Adaptation

Markham Imperviousness Trends



**1952 32** %



**1971 45 %** 





**2002 70 %** 

**1981 56 %** 



- C values required updates based on densities
- i values did not require updates for current IDF
- Q may require "stress test" for <u>some</u> future IDF i
- Return Period Factor for extreme storms increases resiliency / conservatism for extreme events

Markham Standards





### **IDF Trends – Lower in Southern Ontario (Safety Factor)**

 As annual maximum values trend lower, extreme IDF intensities decrease as well.

TI BUILDING MARKHAM'S

- Toronto City "Bloor Street" trends are lower for all durations and for all return periods.
- Design standard IDF is conservative.

| Toronto Extreme Rainfall Trends<br>Environment Canada Climate Station 6158355<br>(Toronto City) |                                        |       |          |                                    |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------|-------|----------|------------------------------------|--|--|
| Return<br>Period<br>(Years)                                                                     | 5 Minute Rainfall Intensity<br>(mm/hr) |       |          | Change in<br>Rainfall<br>Intensity |  |  |
|                                                                                                 | 1990                                   | 2003  | 2007     | 1990 - 2007                        |  |  |
| 2                                                                                               | 113.9                                  | 110.8 | 109.2    | -4.1%                              |  |  |
| 5                                                                                               | 159.4                                  | 154.4 | 151.9    | -4.7%                              |  |  |
| 10                                                                                              | 189.6                                  | 183.3 | 180.1    | -5.0%                              |  |  |
| 25                                                                                              | 227.7                                  | 219.8 | 215.8    | -5.2%                              |  |  |
| 50                                                                                              | 256                                    | 246.8 | 242.3    | -5.4%                              |  |  |
| 100                                                                                             | 284                                    | 273.7 | 268.5    | -5.5%                              |  |  |
| ource:                                                                                          |                                        |       | Overall: | -5.0%                              |  |  |

Environment Canada Engineering Climate Dataset

ftp://ftp.tor.ec.gc.ca/Pub/Engineering\_Climate\_Dataset/IDF/

Up to 2007 per Dataset v2.3, to 2003 per Dataset v1, to 1990 per hardcopy records © CityFloodMap.Com, 2016



## 5 Minute 100-Year Intensity Past Trends / Safety Factors

BUILDING MARKHAM'S



<sup>21</sup> 



### Design IDF May be Above or Below Future IDF Depending on the Scenario Before Return Period Factor Applied

 Design IDF values are above local IDF values.

BUILDING MARKHAM'S

- Design IDF above UofW RCP 4.5 & below UofR A1B values.
- Factored design IDF values can exceed future IDF for shortest durations (adds resiliency).



# Simulation Flow Time Series

Q(t) : Land Use / Soil <- transformation Hyetograph

| Hydro- : | Catchment <-     | Rain           | Storm    |
|----------|------------------|----------------|----------|
| graph    | Parameters       | Pattern        | System   |
| Wet :    | Groundwater & <- | Rain           | Sanitary |
| Weather  | Inflow Response  | Pattern / Vol. | System   |
| Flow     | ('black box')    |                |          |

- Runoff parameters based on soil & development
- Rain pattern may be conservative or unconservative & require review, and/or updates for current IDF
- Q(t) may require "stress test" for future IDF i especially where hyetograph is unconservative or where safety factors for resiliency are not incorporated in the infrastructure system



#### Some Hyetographs Have 'Risk Gap' For Flashy Urban Areas

 IDF data show some watershed storms do not reach the short duration design intensities.

BUILDING MARKHAM'S

Markham
 3hr AES\*
 storm is
 conser vative
 (above IDF
 values).







## Stress Tests for System Resiliency Future IDF

## **Storm & Sanitary Sewer Systems**



\_\_\_\_\_

//////  BUILDING MARKHAM'S



MARKHAM

## Short Duration Rain Intensity Adaptation Requirements

MARKHAM

BUILDING MARKHAM'S





# Hyetographs Intensities Above & Below Future IDF (< 2hrs) (systems have safety factors <u>or</u> require stress test)

 Markham 3hr AES design storm intensities above above UofW RCP 4.5, below UofR A1B values.

BUILDING MARKHAM'S

 Other study design storm intensities may underestimate short duration intensities.





#### Future IDF 'Stress Test' – Minor & Major Storm System (PCSWMM)



BUILDING MARKHAM'S

- Evaluate worst case +20% U. of R. A1B 50% 2065-2095 avg. shift over 2Hrs.
- Markham 3-hr AES (base intensities > local IDF values by 29% over 2 hrs).
- Assume existing hydrology parameters.
- Inlet capture devices in 50%+ of CBs limit mine. system flow impacts.
- Unsteady, gradually varied flow model (PCSWMM).
- Storm system HGL exceeds freeboard of 0.5 m to reach lowest basement elevation.

#### **Baseline Performance**

Peak flow 255 L/s local storm sewer (ID 12)

Maximum major overland flow depth 248 mm.

Foundation drain back-up risk impact remains nil with future IDF (ICD's limit capture), overland impact negligible.

#### **Future Performance**

Peak flow 257 L/s local storm sewer (ID 12) +1%

Maximum major overland flow depth is 265 mm. +17 mm IDF Impact



### Future IDF 'Stress Test' – Sanitary Sewer System (InfoWorks)



BUILDING MARKHAM'S

- Evaluate worst case +30%
  U. of R. A1B 50% 2065 2095 avg. shift over 2Hrs.
- Chicago (per Master Plan base intensities > local IDF values by 22% over 2 hrs).
- Use calibrated/monitored values.
- Apply existing calibrated parameters for inflow and infiltration response.
- Dynamic / gradually varied flow model (InfoWorks).
- Sanitary system HGL less than 2.0 m below grade (near basement elevations).

**Baseline Performance** 

7.4 % surcharged pipes.

1.8 % MH's less than 2.0 m of freeboard with sanitary basement back-up risk.

> Basement back-up risk impact negligible with future IDF – risk varies significantly by design storm pattern

#### **Future Performance**

**12.1 %** surcharged pipes.

3.5 % MH's less than 2.0 m of freeboard with back-up risk +1.7 % IDF impact

# Conclusions

## • System vulnerability varies with design standards:

- Current standards have significantly decreased extreme weather risk (riverine, storm, and sanitary systems).
- Historical land use practices with limited design standards drive <u>specific</u>, <u>local</u> remediation priorities.
- Riverine flood risks not readily addressed (Special Policy)
- Design practice adaptation adds resiliency
  - Hydrology higher runoff coefficients and return period factors
  - Meteorology conservative hyetographs selection for urban areas
- Stress tests demonstrate system resiliency for those future IDF scenarios above design standard intensities
  - Negligible minor and major system impacts where common ICDs are in place (limit minor systems capture, use major freeboard)
  - Sanitary surcharge / basement back-up assessment shows negligible change in surcharge in system with future IDF

# Conclusions

- Adaptation Measures (municipal & private)
  - Cost effective / timely:
    - Sanitary downspout disconnection
    - Sanitary manhole sealing
    - Storm ICDs
    - Commercial flood-proofing, Special Policies
    - Minor system upgrades
  - Costly / partially effective or ineffective
    - Floodplain system upgrades
    - Catchment-wide green infrastructure (cost constraint)
    - On-site runoff over-control (timing constraint)

## **Thank You**

## **Questions ?**