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GHG Footprint - Canola Produc�on
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GHG Footprint - Jet Fuel Produc�on

Oil Extraction Fuel Upgrading

Greenhouse Gases: A Global Problem
Fossil fuels are key sources of energy however, high rates of extraction and
use have led to accumulation of greenhouse gases (GHGs) in the air (Fig.1)

CO2 is the main GHG from the combustion of fossil fuels which induces
higher radiative forcing (CO2 traps solar radiation as heat in the atmosphere)

Aviation fuel combustion contributes to 2-3% of global anthropogenic CO2 
emissions (700 million tonnes of CO2 and increasing, in 2014 ) [IEA, 2016]

Biofuel use disrupts the accumulation of CO2 in air because biofuels are
made from atmospheric carbon, and not carbon sequestered in fossils (Fig.2)

Deployment of aviation biofuels (biojet fuel) has been determined to be a 
key step that can lead to the aviation sector’s achievement of carbon neutral 
growth and overall reduction of GHG emissions [IATA, 2012]

Biofuel Research Objec�ves

Avia�on Biofuel Performance
Apply Life Cycle Assessment (LCA) methodology to define and examine
key life cycle processes for canola biojet fuel

Quantify GHGs emitted (CO2, CH4, N2O) from use of energy resources and 
materials throughout the life cycle (canola cultivation to fuel use, Fig.3)

Convert GHG emissions from life cycle processes into GHG equivalent 
emissions (gCO2eq) using the radiative forcing of CO2 as reference, then
normalize the emissions to 1 MJ of biojet fuel produced

Use Aspen Plus to develop a biojet fuel production model that can calculate
the energy and material requirements of commercial scale biofuel production 
using promising conversion technologies (Fig.4)

Three biojet fuel pathways were examined based on differences in canola  
farming data from Manitoba, Saskatchewan, and Alberta 

Nitrogen fertilizer, natural gas, and hydrogen contributed most to canola 
biojet fuel’s GHG footprint (these are opportunities for emissions reduction)
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GHG Footprint of Jet Fuels from their Life Cycle Stages
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GHG emissions from canola production was relatively higher than fuel 
production: 22 to 30 gCO2eq/MJ (canola) vs 19 to 21 gCO2eq/MJ (fuel)

The carbon content of biojet fuel was fully attributed to carbon sequestered 
as CO2 intake during canola cultivation, which neutralizes the positive CO2 
emissions from fuel combustion

Net life cycle GHG emission of conventional jet fuel was 86 gCO2eq/MJ 
while for canola biojet fuels, the values ranged from 44 to 50 gCO2eq/MJ 

Overall, adopting biojet fuel based on Canadian canola has the potential 
to reduce GHG emissions of jet fuels by 42-49%

Understand the potential GHG emission reduction benefits from biojet fuel 
based on Canadian-grown canola

Apply a life cycle approach to determine canola biojet fuel’s life cycle 
emissions and how it compares with petroleum jet fuel 

Determine where changes in the canola biojet fuel life cycle can best be 
made to lead to meaningful reductions in GHG emissions
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Figure 1. Continuous CO2 measurements from 1960 to 2017
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Figure 2. Two pathways for generating and using fuels

Future Research Work

Figure 3. Processes
represented in the life 
cycle of biomass-based aviation 
biofuel, from biomass cultivation to 
fuel utilization

Conduct sensitivity and Monte Carlo analyses to investigate the range of 
environmental performance and key canola/fuel production parameters

Investigate the impacts of induced land use changes, given the transition of
non-cultivated lands into dedicated lands for biojet fuel production

Examine the viability of other biojet fuel pathways based on GHG footprint
of Canadian feedstocks and corresponding fuel conversion technologies

Figure 4. Aspen Plus process 
diagram for the extraction of 
oil from canola (oilseed) and 
the conversion of oil to biojet
fuel (Bio-SPK)

A
pr

il 
20

17

Atmospheric CO2 at Mauna Loa Observatory
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