

Managing Greenhouse Gas Emissions from Agro-Ecosystems under a Changing Climate

Claudia Wagner-Riddle School of Environmental Sciences

Ontario Climate Change Symposium May 5, 2016

Food Agriculture Communities Environment

Sources of GHG on the Ontario Farm

Importance of Agricultural GHG Emissions

5/11/2016

Source: Environment Canada

Should agricultural sector be concerned?

There is increased pressure to evaluate sustainability of agroecosystems through scientifically-based metrics

Fieldprint[®] Calculator

An educational tool to help you assess how some of your operational decisions affect overall sustainability performance. More...

Demand for agricultural products will continue to grow

Field To Market[®]: The Alliance for Sustainable Agriculture

Field To Market[®] is a diverse alliance working to create opportunities across the agricultural supply chain for continuous improvements in productivity, environmental quality, and human well-being. The group provides collaborative leadership that is engaged in industry-wide dialogue, grounded in science, and open to the full range of technology choices.

https://www.fieldtomarket.org/

Main sources of GHG emissions

Methane is produced by decomposition of organic matter in anaerobic conditions

(j. 2000 - j. 20

Nitrogen addition enhances nitrous oxide production by nitrification and denitrification in soils

How to best manage agro-ecosystems to minimize GHG emissions?

Carbon budget (sink or source?)

Net Ecosystem C Budget = Gross Primary Productivity (gain) and C removed at harvest (loss) and Ecosystem Respiration (loss)

How to best manage agro-ecosystems to increase carbon storage?

Conditions with \downarrow C storage and \uparrow GHG emissions

Degraded or marginal land

http://www.omafra.gov.on.ca/

Bare soil and low residue return

Intensive tillage

http://www.country-guide.ca/

Drained wetlands

Inefficient nitrogen use

http://www.waterloochronicle.ca/

Manure storage

Trends in Ontario's agricultural efficiency

Recent trends in Ontario's cropped area

Mitigation practices for $\uparrow C$ storage and $\downarrow GHG$ emissions

Reduced tillage

Perennials

Restored wetlands

http://www.ducks.ca/

Cover crops

tdaynard.com

http://www.country-guide.ca/

Manure management

Improved nitrogen use

http://www.slideshare.net/NetNexusBrasil/schepers-precision-agriculture-2014 11

Field experiment on GHG emissions in annual and perennial crops used in dairy production systems (fall 2011-2014)

Concluding Remarks

CHANGING LIVES IMPROVING LIFE

- GHG sources and carbon sinks on the farm are varied and complex (off- and on-farm: need LCA approach)
- Promising mitigation strategies have been evaluated at the field scale providing evidence for reduction of GHG emissions (e.g. use of perennials, biogas capture)
- GHG emissions are intrinsically linked to agricultural production: need to use emission intensity (i.e. per yield) as metric
- Trade-offs/synergies between C uptake vs. GHG emissions and climate resilience vs. GHG mitigation need to be evaluated (e.g. cover crops)

Acknowledgements

CHANGING LIVES IMPROVING LIFE

- Funding (NSERC, CFI, IPNI, OMAFRA, DFC, GFO, AGGP/AAFC) and many collaborators
- Research team: post-docs (Shannon Brown, Diego Abalos, Katelyn Congreves, Kumudinie Kariyapperuma); research associate (Susantha Jayasundara); graduate and undergraduate students

Thank You!

Contact information: <u>cwagnerr@uoguelph.ca</u>

Food Agriculture Communities Environment

Research Projects

- Carbon budget of switchgrass vs. corn
- Mitigation practices for cropping systems:
 - Annual and perennial
 - No-till vs. conventional tillage in residual removal systems
 - Timing manure application (spring vs. fall)
 - Rapid incorporation or injection vs. surface-applied manure
 - Anaerobically digested vs. undigested manure
 - Inorganic N management (timing, source)
- CH₄ mitigation practices for manure management:
 - Anaerobic digestion and biogas capture
 - Reduced methanogen inoculum through complete or partial storage emptying

Over 3 years corn was **source** of C and hay field was C **neutral**

Data from M. Sulaiman

N₂O fluxes from annual and perennial crops used in dairy production systems

Incorporating more feed from perennial sources could contribute to the reduction in C footprint of milk

Manure Storage: Complete emptying

 Reduced methanogen inoculum through complete emptying resulted in 55% reduction in GHG emissions

Avoided emissions associated with biogas production

