

Making Climate Information Relevant to Local Decision-Makers in Ontario

Glenn Milner Analyst, Ontario Climate Consortium Toronto and Region Conservation Authority

Outline

- About the Ontario Climate Consortium
- Climate Data in Ontario
- Translating Climate Data into Information for Decision Makers
- Case Study:
 - Drought in the West Humber Subwatershed, Peel Region, ON
- Final Key Messages

About the Ontario Climate Consortium

The OCC was established in 2011 as a centre of expertise and boundary organization providing research and analysis services to municipalities, conservation authorities, and the broader public sector:

- . Climate Science & Information
- 2. Resilience Planning & Implementation
- 3. Reporting & Evaluation

ONTARIO

IMATE CONSORTIUM

What is Climate Information?

- Climate Information is the interpretation of observed and modeled data
- Information is processed and comes in a meaningful form – generates knowledge
- Confidence limits, variability, etc.

Adapted from: UNEP (2009) Climate information and capacity needs for Ecosystem Management under a Changing Climate.

ONTARIO CLIMATE CONSORTIUM

Climate Data in Ontario

Where can Ontario users get climate data?

Historical Data:

- At least 14 different gridded or infilled station historical data products
- Environment Canada data archives
- Other public and private monitoring networks (e.g., TRCA monitoring gauges)

Future Projections:

- At least 21 different publically available future climate datasets, many with multiple subsets
 - GCMs, RCMs
 - Dynamical, Statistical downscaling
- Custom analysis by intermediaries agencies, universities, and consultants

What kinds of studies are climate data being used for?

Ontario Climate Data Needs

- Availability of climate data is generally not a problem in Ontario
- Ad-hoc use throughout province is leading to:
 Inconsistent methods and incomparable results
 - Insufficient reflection on uncertainty and scale
 - Potentially inefficient or ineffective adaptation measures
- Ontario users need help with application
 - What data is required, and from what datasets?
 - How can we interpret data for the system?
 - What shouldn't be attempted with the data?

The Problem

The Response

Confusion with climate data slows adaptation

Data on climate change can get "lost in translation"

- Environmental Commissioner of Ontario, 2015

Translating Climate Data into Information for Decision Makers

Translating Climate Data into Information for Decision Makers

- 1. Interpreting Historical Climate Data
- 2. Selecting Climate Indicators
- 3. Communicating Uncertainty in Future Climate Projections

Interpreting Historical Climate Data

Selecting Climate Indicators

• Scoping with stakeholders can identify most relevant climate indicators for an analysis or assessment

Climate Driver	Indicator
Seasonal Temperature	Mean monthly temperature [°C]
Seasonal Precipitation	Total seasonal precipitation [mm]
Wind Patterns	Mean seasonal surface windspeed [m s-1]
Extreme Winds	About as Likely as Not; unavailable historically in some locations
Extreme Precipitation Intensity	Likely; available and modeled but challenging to replicate local convective storms
Extreme Precipitation Frequency	Total annual precipitation in the 95 th percentile [mm]
	Total annual precipitation in the 99 th percentile [mm]
Extreme Heat	Very Likely; data available in high quality, models converge and are largely in line with historical conditions
Snowpack / Snowcover	No local indicators available
Drought	Moisture index (precipitation – evapotranspiration) [mm]
Weathering (Freeze-Thaw)	Days with maximum temperature > 0 and minimum temperature < 0

Communicating Uncertainty in Future Climate Projections

Drought in the West Humber Subwatershed

A part of:

Natural Systems Vulnerability Assessment in the Region of Peel

Context of the West Humber (Peel Region)

- Current Vulnerability:
 - Shallow Groundwater system
 - Low Gradient
 - Minimum Flows Below
 Targets in Summer
 - Important Redside Dace Habitat for Toronto Region

ONTARIO CLIMATE CONSORTIUM

Future Vulnerability?

Identifying Relevant Climate Indicators and Climate Information from Research

Historical Drought: What have we observed in the past?

Current Vulnerability: How sensitive is the system to drought?

Scenarios of Drought

Minimum	1996-2000 (Tor)	
10 th Percentile	1949-1953 (Tor)	
25 th Percentile	1996-2000 (Orvl)	
50 th Percentile	1991-1995 (Tor)	
75 th Percentile	1969-1973 (Orvl)	
90 th Percentile	2005-2009 (Orvl)	
Maximum	2002-2006(Orvl)	

Vulnerability Index to Drought (7Day Low Flow)

How might drought shift by 2050s?

Historical (1981-2010) Average Moisture Index: -0.3mm Future (2041-2070) Ensemble Average Moisture Index = -13.5mm

IMATE CONSORTIUM

Future Vulnerability in the West Humber Subwatershed

- Disruptions in water source to surface features likely to increase slightly as drier conditions become more common (less hydrologic connectivity)
- Some stream reaches are highly vulnerable these may worsen into the future
- A degree of resilience does exist in numerous reaches though – these likely will buffer dry conditions into future
- Monitoring of flows important under climate change and future urbanization for ecosystem health under drought conditions

Key Messages

- 1. Translating climate information can be challenging
- 2. Climate information will not solve all our problems!
 - Uncertainty exists as well with impact response of systems to climate change
- 3. Climate information is among other pillars required in adaptation initiatives
 - Research & Stakeholder consultation also needed

Thank You!

For more information, please visit: <u>www.climateconnections.ca</u> | <u>ww.trca.on.ca</u>

> Glenn Milner Analyst, Ontario Climate Consortium <u>gmilner@trca.on.ca</u>

