

- temperature could increase by 4.2°C and annual
- adapted^{2,3}.
- successfully regenerating Ontario's forests.

(519) 362-8629 jyang06@uoguelph.ca

Note: NPV (\$/ha) Diversity for White Pine for Seed Procurement (red circle:North Bay)

Local Replantation	Seed Procurement	Seed Deployment
North Bay (46.3 ⁰ N, -79.45 ⁰ W)	42.29 ⁰ N, -83.20 ⁰ W	44.04 ⁰ N, -83.79 ⁰ W
50	50	45
421	465	366
887	1009	951
Hearst (49.7 ⁰ N, -83.67 ⁰ W)	45.38 ⁰ N, -93.20 ⁰ W	51.13 ⁰ N, -74.20 ⁰ W
55	55	55
104	111	105
	10	70

Note: NPV (\$/ha) Diversity for White Pine for Seed Deployment (red circle:North Bay)

Take-home message

 Forest investors could benefit from alternative seed strategies

- > They could gain additional \$17/ha for black spruce and \$122/ha for white pine from sourcing seed from a specific location (*i.e.*, seed procurement).
- > Replanting black spruce and white pine at a alternative planting site (*i.e.*, seed deployment) could achieve a NPV that is \$2/ha higher for black spruce and \$64/ha higher for white pine than local replantation.
- Under climate change, local seed is no longer ideal
 - Most suitable seed source for both species is from a relative southern region.
 - Highest yield for black spruce occurs at a region with mean annual temperature of 4-6^oC.
 - White pine grows best at a location with mean annual temperature of 12^{0} C.

References

1) McKenney, D.W., J. Pedlar and G. O'Neill. 2009. Climate change and forest seed zones: past trends, future prospects and challenges to ponder. *Forestry Chronicle* 85(2): 258-266.

2) Morgenstern, E. K. 1996. Geographic variation in forest trees: genetic basis and application of knowledge in silviculture. Vancouver, BC: University of British Colombia press.

3) Wang, T., A. Hamann, A. Yanchuk, G.A. O'Neill and S.N. Aitken. **2006.** Use of response functions in selecting lodgepole pine populations for future climate. *Global Change Biology* 12(12): 2404-2416.

4) Chang, S.J. 1984. Determination of the optimal rotation age: a theoretical analysis. Forest Ecology and Management 8(2): 137-147.

