Can experimental simulation tell us about future environments in a changing climate?

B. Branfireun and Z. Lindo. Dept. of Biology, Western University

The Problem

We are faced with the challenge of predicting the response of ecosystems to future climate conditions.

Why do we care?

- Ecosystem/ecozone shifts and transition
- Species expansion/extinction
- Increases/decreases in diversity
- Changes in ecosystem function (carbon storage, nutrient/element cycling)

Approaches

Approach

Observation

Experimentation

Modelling

Observation

- Reliance on observation of natural systems alone is insufficient if our objective is to inform policy and societal adaptation
- Occurs over the same time frame as the environmental change itself.
- Potentially already past its 'tipping point' by the time change is observed.

Experimentation

- Can hypothesis test
- Experimentation can provide unexpected insights
- Tangible evidence of ecosystem
 responses to environmental forcing
- Not without challenges (more later...)

Modelling

- Modelling is a sound approach based on best available knowledge.
- Can hypothesis generate, but not test.
- cannot account for unexpected synergistic/antagonistic interactions (i.e. cannot know the unknowns).

BIOTRON

- Centre for
 Experimental
 Climate Change
 Research
- Canada Foundation
 for Innovation
- Opened in 2007

Environmental Chambers and Incubators

• Roof-top Biomes (6)

• Earth Science Biome (1)

• Walk-in/Reach-in Environmental Chambers (36)

- Microbiology Incubators (20)
- acubators (20)

Biological Response and Adaptation to Climate and Environment (BRACE)

- Experimental simulation of climate change effects on boreal peatland ecosystems
- Integrated measures of ecosystem response to climate change stressors (Temp, moisture and CO₂).

BRACE - Approach

- ~100 peatland mescosms subjected to experimental climate change conditions (T; CO₂; WT; factorial design).
- Measures of plant community, meso and micro-faunal composition, decomposition and water quality over 16 months

- Temperature drives a change in plant community composition.
- Loss of Caccumulating species (Sphagnum)

Sampling Time (months)

Dieleman, Branfireun, McLaughlin & Lindo, Glob. Change Biol. (accepted).

 Synergistic effects between temperature and CO₂ for some plant species.

Dieleman, Branfireun, McLaughlin & Lindo, Glob. Change Biol. (accepted).

- Result is diverging plant community composition
- Implications for Canadian ecosystem stability and carbon stocks

Experimental Challenges

- Representativeness
- Generalizability
- Artifacts

Z. Lindo

Experimental Benefits

- The power of demonstration
- Compelling <u>empirical</u> <u>evidence</u> of antagonistic and synergistic relationships IF the mechanisms are consistent with theory

BIOTRON

bbranfir@uwo.ca

