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1. PURPOSE OF THIS ADDENDUM 

This summary report is an Addendum to a larger technical report entitled “Comparison of 

Emerging Techniques for Updating Intensity-Duration-Frequency (IDF) Curves in Southern 

Ontario”.  

The aim of this Addendum is to provide the Toronto and Region Conservation Authority and Essex 

Region Conservation Authority and their partners with IDF statistics, curve plots and equations in 

a form similar to Environment and Climate Change Canada’s official plots familiar to municipal 

staff and engineering consultants. Accompanying this summary is a PDF document of the 

selected plots and a text file summarizing the data.  

2. STUDY BACKGROUND & OBJECTIVES 

2.1. IDF Statistics in Water Management 

Rainfall intensity-duration-frequency (IDF) statistics are used in many water management 

applications, including drainage design, stormwater and watershed planning, flooding and erosion 

risk management, and infrastructure operations. In Ontario for example, regulatory agencies, 

such as the Ministry of Transportation, Ministry of Environment and Climate Change, 

municipalities, and Conservation Authorities mandate the use IDF statistics as one of the major 

criteria in the design of stormwater management systems1. Currently, many of these regulatory 

frameworks require the use of IDF statistics based on historical rainfall records, which are officially 

produced and updated by Environment Canada and available online2. 

2.2. IDF Statistics and Climate Change 

Because IDF statistics have been deemed to be useful in expressing likelihoods of occurrence 

for a range of storm-event types in a given area, they have become a staple in water management. 

However, IDF statistics used in Ontario are based on historical time series data. Therefore, their 

ability to capture potential characteristics of future rainfall regimes associated with scenarios of 

climate change has been questioned. This is a key issue, as many studies have projected 

increases in the intensity and frequency of the extreme rainfall events that are of greatest concern 

to water managers under scenarios of climate change3. As a result of this, there is a need to 

understand how such changes might affect future IDF statistics. This is particularly relevant to the 
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design and planning of built and natural water management infrastructure, as it is designed for 

50- to 100-year lifespans during which substantial change in rainfall regimes are projected3.  

2.3. Uncertainty in Future IDF Statistics 

There is a rapidly emerging body of knowledge and guidance on the development and use future 

IDF statistics4 that aims to account for the expected change in climate; however, there is also a 

lack of consensus on the most appropriate methods. This is due in large part to the wide array of 

distribution functions, future climate model datasets, downscaling methods, and future scenarios 

that could be used in creating future IDF statistics. With the large range of potential approaches 

available, there is the potential for significant variability among future IDF statistics for a given 

area. This variability and the current lack of consensus on the most adequate methods ultimately 

translates into uncertainty associated with the development of IDF statistics and on how climate 

change is projected to affect local rainfall regimes. 

2.4. Study Objectives and Research Questions 

Given the potential variability among IDF statistics at the local or regional scale, the aim of this 

study was to understand the limitations and applicability of different techniques for updating IDF 

statistics in light of climate change for two local study sites in southern Ontario (Fig. 1): (1) 

Windsor-Essex Region (WER) and (2) the Greater Toronto Area (GTA). More specifically, we 

sought to answer the following research questions: 

 What is the variability among IDF statistics when using a set of the most robust 

downscaled climate change datasets in each study area? 

 What trends can be ascertained about future extreme rainfall based on the downscaled 

IDF statistics? 

 Given the datasets used and the results of comparing them, what are the implications for 

water management practice? 
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Figure 1: Location map of selected stations in Southern Ontario 

 

3. METHODOLOGY & DATASETS 

The following steps were undertaken to address the research questions in this study (Fig. 2): 

1. Identify and review emerging techniques from the last 10 years to determine the most 

robust approaches for developing future IDF statistics for the selected sites (including 

climate model datasets, downscaling and bias-correction methods, IDF statistic and curve 

derivation). 

2. Adapt and apply a set of the most robust approaches to multiple stations in the Toronto 

and Essex region (see Fig. 2 for details of datasets and methods used); and 

3. Use statistical and graphical methods to compare the datasets produced from the various 

approaches to elucidate trends and characterize uncertainty. 
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Fig. 2: Summary of overall study methodology 

	 	



7/12 

4. STUDY FINDINGS & INTERPRETATION 

The following represent the most relevant findings for water managers, based on the comparative 

analysis among the ensemble of future IDF statistics generated: 

 There is significant variability among future IDF statistics, which is manifested in a large 

range of intensity values for each storm durations and return period. 

 In some cases, particularly in the GTA, the future IDF statistics show increases and 

decreases in rainfall intensity values. For instance, the relative change in intensity for the 

30-minute, 100-year return-period event for the 2090s at Pearson Airport station ranged 

from +127% to -25% compared to the baseline period. The range in relative change for 2-

hour event for 10- and 100-year return period events is shown in Fig. 3 and illustrates a 

similar pattern of large intensity ranges for the 2090s, especially at Pearson Airport. 

 In general, variability among projections is greater for more extreme storms (e.g., 100-

year vs. 10-year). This pattern can be seen in Figure 3, with the exception of the 10-year 

return period event for Windsor Airport station for the 2030s and 2050s. In Figure 3, a 

relative change of 0% would represent no change from the historical baseline storm 

intensity modeled with the Gumbel distribution. 

 Based on the comparison of distribution functions, the GEV function was the most robust. 

While the Gumbel function may have been appropriate in the past, results of this study 

suggest the need to continually re-evaluate the suitability of existing methods, such as the 

distribution function, in IDF statistics updating. The fit of different probability distribution 

functions to extreme rainfall data is station-specific and is influenced by data quality.  

 Variability among future IDF statistics due to climate model projections is generally greater 

than that associated with geographic variability among stations. More of the variability is 

due to the climate model projections than geographic differences within each study area.  

 There is no definitive trend with respect to variability among projections with regard to 

storm duration (i.e., projections related to shorter storms are not necessarily more 

uncertain than longer-duration storms). 
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Fig. 3: Comparison of the range in relative change in rainfall intensity from baseline for the 2-hour 
event for 10- and 100-year return periods (0% on y-axis is no-change from historical baseline). 
Shaded boxes represent the inter-quartile range (25th to 75th percentile), the horizontal bar 
represents the median, and whiskers represent the minimum-maximum range for the ensemble. 

 

4.1. Implications for Water Managers 

Based on the findings of this study, it appears that no single method within the permutations 

analyzed can be deemed the “best” approach for developing future IDF statistics.  Despite 

developing an ensemble using a robust subset of downscaled datasets, there is still significant 

variability among future IDF statistics. In some cases, datasets diverge in the direction of change 

projected, which results in significant uncertainty for practitioners. 

These findings do not, however, mean that projected changes of increased storm intensity and 

frequency are incorrect, but rather points to the well-documented scientific limitations associated 

with future extreme rainfall analysis. Among these limitations are (1) the accuracy of climate 

models in representing the atmospheric dynamics that produce extreme rainfall at the local scale, 

particularly for short-duration events; (2) the quality of historical data used as inputs into statistical 
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models, and (3) the assumptions within future emission scenarios, downscaling and bias-

correction techniques. 

The methods for deriving IDF statistics, both for historical and future periods, are based on the 

assumption of stationarity (i.e., extreme rainfall time series have a constant mean over time). 

Climate change however, challenges this assumption. This is not to suggest that future IDF 

statistics are not useful, but rather that practitioners should use them as one of many tools within 

resilient water management, and not as the only source of design information about extreme 

rainfall. Risk-based management approaches that inherently address uncertainty can be a viable 

way forward and include approaches such as scenario-testing, sensitivity analysis, and re-

evaluating the levels of extreme rainfall hazard tolerance acceptable to decision-makers. 

Additionally, the high levels of uncertainty point to a need to continually refine the extreme rainfall 

information used in decision making by augmenting observational data quality and coverage, 

regularly updating IDF statistics based on ongoing monitoring, and continually assessing the most 

robust climate change models, and downscaling techniques.  

5. ABOUT IDF STATISTICS PLOTS AND DATASETS 

The results of this study have been prepared as “overlays” of the IDF curve ensemble on top of 

historical IDF curves (Fig. 4). All plots are provided in Appendix A to this summary. There is also 

an output text file summarizing the numerical values and the IDF curve equations for each plot 

(Appendix B). 

Each graph represents a unique combination of a given station, return-period and future period. 

Within each graph the ensemble is represented as a series of curves. Each curve reflects a 

specific percentile from the distribution. Since each storm-type and future period has a number of 

different projections, the presentation of these as percentiles from the ensemble allows for the full 

distribution to be represented. The following list summarizes the IDF plots: 
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Fig. 4: Example of IDF curve overlay graph 

 

 Future Periods: Plots are available for three different periods (2030s, 2050s, 2090s). 

 Storm Types: Plots are available for 6 different return-periods (2-, 5-, 10-, 25-, 50-, 100-

year return period events) and cover 8 storm durations (15-minute, 30-minute, 1-hour, 2-

hour, 3-hour, 6-hour, 12-hour, and 24-hour events). 

 Ensemble Representation: For all periods, the ensemble statistics represented are the 

minimum, maximum, 10th percentile and 90th percentile values. For the 2090s, there are 

additional plots containing the 50th and 75th percentiles. 

 Historical IDF Curves: On all plots, this historical data are represented as two separate 

curves using the Gumbel and GEV distributions. 

 IDF Curve Equations: Each curve is represented by an equation listed in the legend. The 

curve is based on the following equation that is also implemented in Environment and 

Climate Change Canada’s IDF curves: 
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Where ܴ is the rainfall intensity (mm hr-1), ܶ is the storm duration (hr), and ܽ and ܾ are 

coefficients estimated using a least squares method implemented using a weighted 

version of the nonlinear least squares “nls” function in the computer program R. 

	

5.1. Notable Limitations 

The following represent the main limitations within the IDF statistics that should be considered by 

all users: 

 Limited ensemble: The ensemble represented on each graph is a limited subset of the 

potential climate change scenarios for each study area. There are conceivably a very large 

number of potential climate future projections that could be derived, considering the 

number of climate models, downscaling methods and scenarios available. In this study, 

only five different climate models, two statistical bias-correction methods, and three 

emission scenarios are considered for future periods. While the models selected are 

deemed robust for the southern Ontario region, they are still only a subset of all models 

available. As such, the full variability and uncertainty are likely not captured within this 

dataset. 

 Different models for different periods: Not all climate models had output for all future 

periods, and as such the size of the ensemble and models represented varies as is 

summarized in Table 1 below.  Additionally, there is slight difference in the definition of the 

2050s future period, however, this does not affect the results in any significant manner. 

 Curve fit: It is evident in some plots that the IDF curves do not perfectly fit the point data. 

This is because there are some outliers within the dataset that make curve fitting a 

challenge. The accompanying text file contains information on the curve-fitting error in the 

form of the “standard error”. The standard error for the entire dataset ranges between 1% 

and 5% and averages 2% which is an acceptable error term in this context. 
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Table 1: Future Period Ensemble Composition 

Future Period No. Ensemble Members Models and Scenarios 
2030s 12 MIROC-ESM (RCP4.5, RCP8.5),  

HadGEM2-ES (RCP4.5, RCP8.5), 
CanRCM4-CanESM2 (RCP4.5, RCP8.5) 

2050s 8 HRM3-HadCM3 (SRES A2), 
CRCM3-CGCM3 (SRES A2), 
CanRCM4-CanESM2 (RCP4.5, RCP8.5) 

2090s 12 MIROC-ESM (RCP4.5, RCP8.5), 
HadGEM2-ES (RCP4.5, RCP8.5), 
CanRCM4-CanESM2 (RCP4.5, RCP8.5), 

 
 
 

1 See the following: MOE, “Stormwater Management Planning and Design Manual” (Toronto, ON, 2003); 
MTO, “Drainage Management Manual,” 1997; TRCA, “Stormwater Management Criteria” (Toronto, ON, 
2012); City of Mississauga, “Subdevision Requirements Section 2 Design Requirements” (Mississauga, 
ON, 2009). 

2 Environment Canada’s IDF curves are available online at the following URL and are updated periodically: 
ftp://ftp.tor.ec.gc.ca/Pub/Engineering_Climate_Dataset/IDF/. At the time of this report, the curves were 
updated to 2013 rainfall data. 

3 For example, see: J. Zhu, “Impact of Climate Change on Extreme Rainfall across the United States,” 
Journal of Hydrologic Engineering 18, no. 10 (2013): 1301–9; O. Seidou, A. Ramsay and I. Nistor, “Climate 
Change Impacts on Extreme Floods I: Combining Imperfect Deterministic Simulations and Non-Stationary 
Frequency Analysis,” Natural Hazards 61, no. 2 (2012): 647–59; S. Westra et al., “Future Changes to the 
Intensity and Frequency of Short-Duration Extreme Rainfall,” Reviews of Geophysics, September (2014), 
doi:10.1002/2014RG000464; C. Cheng et al., “A Synoptic Weather-Typing Approach to Project Future Daily 
Rainfall and Extremes at Local Scale in Ontario, Canada,” Journal of Climate 24, no. 14 (2011): 3667–85. 

4 Technical report for this project contains a full review of approaches 

NOTES: 
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EXECUTIVE SUMMARY 

Background and Need 

In Ontario, similar to other jurisdictions worldwide, extreme rainfall statistics in the form of 

intensity-duration-frequency (IDF) curves are used extensively in the design of water 

management infrastructure and policies. Common applications include the design and operation 

of drainage, stormwater conveyance and storage infrastructure (MOE 2003) and the delineation 

of floodplains and characterization of flood risk (MNR 2002). Typically, these applications rely on 

historical records of precipitation to determine critical thresholds or levels of risk that are reflected 

in system design. Recently observed and projected trends in North America’s climate suggest 

however, that historical assumptions about the magnitude and frequency of extreme events may 

not hold true into the future. As such, there is significant work taking place among water managers 

and researchers to develop IDF curves to represent the impact of climate change on extreme 

precipitation. There are however, a number of different methods and datasets that can, and have, 

been used across Ontario, Canada and beyond to produce future IDF statistics based on climate 

model output.  

When examining results of multiple studies for selected communities in southern Ontario in an 

attempt to generate future IDF curves for those locales, the Toronto and Region Conservation 

Authority, and Essex Region Conservation Authority discovered that results from different studies 

can be divergent or inconsistent. Additionally, there is no uniformly accepted method and 

approach for developing IDF information in light of climate change. This makes it difficult for water 

management stakeholders, including engineers, planning and other practitioners to interpret 

future IDF curves and understand the level of uncertainty associated with such information. 

Study Objectives and Methods 

This report presents results from a study conducted over the period l2014 to mid-2015) and aimed 

at understanding the limitations and applicability of different techniques for updating IDF statistics 

in light of climate change. This report has attempted to address this issue by conducting a 

comparison and analysis of the outcome of using different methods that are available for the 

development of future IDF curves. Within the study, five different climate model outputs are 

compared, including two global climate models and three regional climate models. Depending on 

the model and data availability at the time of the study, two different emission scenarios were also 

compared. Each model’s output was downscaled to 15 Environment Canada precipitation 
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monitoring stations concentrated in the Essex-Windsor and Greater Toronto Areas (GTA) using 

two different methods: (1) quantile-base bias correction and (2) the delta-change method. 

Alternative distribution functions were also investigated to determine the influence of that 

assumption on IDF curves. 

Results 

Results demonstrate that there is significant variability among the subset of future climate 

projections, with the greatest uncertainty associated with short-duration and high-intensity events 

(15 minute to 1-hour event above the 25-year return period). Variability was also greater in the 

Windsor area compared to the GTA. A comparison of the different models to historical 

observations revealed significant discrepancies between the modeled and observed extreme 

precipitation records, suggesting that further downscaling was needed to correct inherent climate 

model biases. Another critical finding was that, although the Gumbel distribution is used by many 

who develop IDF curves, it was actually the poorest fit of all distributions identified for comparison. 

Ultimately, the Generalized Extreme Value (GEV) distribution was determined to be a more robust 

model for representing extreme precipitation in the study areas examined. 

Implications for Water Management and Practitioners 

Given the significant uncertainty associated with future and historical IDF curves, as presented 

and discussed in this study, it is reasonable for water managers to reevaluate the current levels 

of risk within existing assets and policies, in addition to those contained in guidelines on the design 

of infrastructure and policies. The findings have also led to the conclusion that some of the 

fundamental theoretical and practical assumptions made during the development and use of 

future IDF information, are not robust for the areas examined in this study, which are influenced 

by short-duration, high-intensity storm events that are not well represented in climate models. A 

key implication of the findings in this study is that precise design thresholds embedded within 

water management policy and infrastructure design do not capture the full profile to extreme 

precipitation risk for the study areas considered. Given the uncertainty in future IDF curves (or 

statistics), it is recommended that weight-of-evidence approaches be used when responding to 

potential extreme precipitation risks at the local scale.  

While future IDF curves, such as those generated in this study may form part of the evidence 

base for adaptation to extreme precipitation risk, it is also critical that approaches incorporate 

historical extremes, and information on the thresholds and vulnerabilities of systems exposed to 
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the extreme precipitation regime in question. The corollary for policy and infrastructure decision 

making is that resiliency-based strategies, including characterizing hydrologic responses and 

vulnerabilities to a range of extreme precipitation regimes using a combination of empirical 

evidence of impacts and dynamical stress testing, or modeling, offer the most promising response 

to changes in extreme precipitation associated with global climate warming.  

Overall, based on this study results, it is recommended that further study is needed in the selected 

study areas to better understand and refine the uncertainties involve in the future IDF statistics. 

This appears necessary before major change in infrastructure design standards in the study 

areas. Further study should involve the analysis of non-stationarity in the extreme rainfall series, 

the development of regional IDF statistics using non-stationary methods such as Bayesian 

inference; and a comprehensive statistical uncertainty analysis. Such study is part of the FloodNet 

Research Program and will require active contribution from FloodNet partners in selected study 

areas. 
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1. INTRODUCTION 

1.1. Partnership 

This research project is a partnership coordinated through the Ontario Climate Consortium (OCC) 

and led by the Toronto and Region Conservation Authority (TRCA) and Essex Region 

Conservation Authority (ERCA). Research and analysis was conducted by OCC-member 

researchers at McMaster and the University of Waterloo. Funding support was provided to this 

project from the County of Essex, the Towns of Amherstburg, Essex, Kingsville, LaSalle, 

Tecumseh, the Cities of Windsor, Toronto and the Regional Municipalities of Peel and York. The 

OCC is a collective of scientists, researchers and practitioners from academia, the public and 

private sectors across Ontario with a focus on addressing climate change issues pertinent to 

Ontario and beyond. 

The particular need to generate intensity-duration-frequency (IDF) curves for representing 

scenarios of climate change has been identified in several key policy and guidance documents in 

Ontario, including the province’s 2011-2014 climate change strategy, Climate Ready, and the 

Canadian Standard Association’s 2012 technical guide entitled Development, interpretation, and 

use of rainfall intensity-duration-frequency information: Guideline for Canadian water resources 

practitioners. As members of the OCC network began independently exploring methods and 

climate change datasets for generating future IDF curves for use in water management 

applications, it became apparent that many different approaches exist and it was unclear the 

extent to which they differ or converge in their results. A research partnership was formed between 

Conservation Authorities in the Toronto and Essex Regions and researchers at McMaster and 

Waterloo with shared interests in understanding the outcomes of using different calculation 

methods and climate datasets in the development of future IDF curves. 

1.2. Background 

In Ontario, similar to other jurisdictions worldwide, extreme rainfall statistics in the form of 

intensity-duration-frequency (IDF) curves are used extensively in policy and in design 

methodologies for water management infrastructure. Common applications include the design 

and operation of drainage, stormwater conveyance and storage infrastructure (MOE 2003) and 

the delineation of floodplains and characterization of flood risk (MNR 2002). Typically, these 

applications rely on historical records of precipitation to determine critical thresholds or levels of 
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risk that are reflected in system design. Recently observed and projected trends in North 

America’s climate suggest however, that historical assumptions about the magnitude and 

frequency of extreme events may not hold true into the future. Such trends are well documented 

in scientific studies (Sillman et al. 2013; King et al. 2012; Peck et al. 2012; Cheng et al. 2011, 

2010) and climate model outputs (Wang et al. 2014; Wang and Huang 2014; Senes 2011), which 

suggest that the intensity and frequency of extreme precipitation events are increasing and will 

continue to increase in southern Ontario (Lemmen et al. 2008). Given the anticipated impacts of 

climate change on extreme rainfall, there is a great deal of interest by municipalities, Conservation 

Authorities, provincial agencies, infrastructure proponents, and risk managers in developing 

rainfall IDF statistics that reflect anticipated future climate conditions, so that these can be 

reflected in design and operation of water management systems.  

The initial intent of this study was to develop future IDF curves for two study areas in consideration 

– the Greater Toronto Area and Windsor-Essex. Upon beginning preliminary research to identify 

a methodology and climate projection datasets to use in generating future IDF curves, it became 

evident that there are a number of challenges involved in the derivation of future extreme rainfall 

statistics. Chief among these is the lack of a “universal” or “well established” methodology for 

updating IDF curves based on projected climate change scenarios. In Canada alone there have 

been 5-10 different methodologies applied in various studies (e.g. Coulibaly and Shi 2005; Mailhot 

et al. 2007; Nguyen et al. 2008; Solaiman and Simonovic 2011; Srivastav et al. 2014; Wang and 

Huang 2014; and others see Appendix 1).  There is also an extensive number of potential future 

climate projections from various climate modelling experiments that one could select to represent 

the future local climate and no clear picture regarding the effect of this range on overall result 

uncertainty. Additionally, given the highly localized nature of many of the atmospheric processes 

driving extreme precipitation regimes in southern Ontario, it is necessary to use locally 

downscaled datasets for a given study area. This is necessary because the spatial and temporal 

resolution of global climate model (GCM) output, which is the basis for climate change projections, 

is too coarse to represent the physical processes of convection and the land-atmosphere 

interactions that produce the majority of extreme rainfall events of concern. Downscaling can be 

accomplished using GCM output in either a statistical model that relates large-scale variables to 

local ones (statistical downscaling), or as boundary conditions in a regional-scale climate model 

(RCM) that runs at finer spatial and temporal resolutions (dynamical downscaling). However, 

there are a variety of statistical and dynamical downscaling methods and models that can be used 

to this end.  A recent inventory of existing downscaled climate projections available for southern 
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Ontario by the OCC, revealed 20 unique possible datasets with many having multiple subsets 

combining different GCMs, RCMs and downscaling methods.  Therefore, there is a very large 

number of potential combinations of climate model experiments, downscaling methods and 

methodologies for calculating future IDF statistics, suggesting that there may be major uncertainty 

associated with the estimation of future extreme rainfall characteristics.  

Given these aforementioned challenges and possible sources of uncertainty, this study is 

designed to fill gaps in current knowledge and enhance understanding of the possible range of 

variability of IDF curves in Southern Ontario based on the use of different downscaled datasets.  

1.3. Objectives 

The main objective of this study is to compare the most robust emerging techniques for updating 

IDF curves using several different global and regional climate model projections along with 

different techniques for downscaling and derivation of future IDF statistics. This approach aims to 

examine the range of variability in calculated IDF curves and statistics due to variability inherent 

to the climate model predictions and the downscaling techniques.  The study is conducted for two 

study areas in southern Ontario: (1) the Greater Toronto Area and (2) Windsor-Essex region. The 

specific objectives are to  

• Briefly review emerging techniques over the last ten years (2003-2013) for the derivation 

of future IDF curves and statistics;  

• Identify the most robust emerging techniques; 

• Adapt and apply selected techniques for updating IDF curves or statistics in Toronto and 

Essex region respectively using a number of different climate projection datasets as input; 

and 

• Compare the results of selected techniques, document strengths, limitations, and sources 

of uncertainty, and discuss the implications for water management practice 

• Report findings and recommendations to ERCA and TRCA in the form of technical report. 

So far, to the best of the authors’ knowledge, no such comparative study has been carried out in 

Ontario. Such a comparison is essential to further understanding the possible range of variability 

of future IDF statistics (commonly referred to as IDF curves) due to uncertainty associated with 

climate projections, multiple methodologies and methodological limitations in a context of non-

stationary environment. 
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2. STUDY AREAS 

This case study has been commissioned by Toronto and Region Conservation Authority (TRCA) 

and the Essex Region Conservation Authority (ERCA), and is therefore focused on those two 

regions. Several short duration rainfall recording stations have been screened for data quality and 

length requirements, and 15 were ultimately selected to generate the IDF curves with a focus on 

the two study areas in question.  The regional zones of extreme precipitation representing each 

study area described in Paixao et al., (2011) were initially used to screen all Environment Canada 

extreme precipitation stations in each study area. This included identifying the homogeneous 

zone each station belongs to which better guides the station selection. The criteria established to 

screen stations were a minimum of 20-years of data with the most recent year available being 

after 2000, stations with the least gaps in the precipitation record, and an adequate geographic 

coverage across of each study area. Additional stations were selected from outside the immediate 

study areas to understand broader geographic trends. The list of the selected stations is 

presented in Table 1 along with some statistical properties of the hourly maximum annual rainfalls. 

The selected stations’ locations are presented in Figure 1 and additional information on the 

datasets is presented in Section 3 of this report. Except Hamilton Airport, most stations in Toronto 

area have lower altitude compared to those in Windsor area which may be related to orographic 

effect caused by the escarpment. The statistical parameters (mean, variance and skewness) 

calculated did not exhibit any specific geographic pattern. In both areas, most of the stations have 

low and positive skewness coefficients. Apart from very few stations, the mean values are in the 

same range, but there are more disparities in the variances. Very similar results are obtained 

when other storm durations are considered which is not surprising because extreme rainfall is 

usually assumed a random variable. Given that each station data are used independently from 

the others, the information presented in Table 1 is descriptive and do not affect the development 

of the station-based IDF statistics. In a regional IDF development, features such as orography 

and station variances at the regional scale can have an impact. 
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Table 1: Selected stations and their statistical parameters for 1 hour duration maximum annual rainfall. Unless otherwise specified, all 
stations are Environment Canada precipitation stations. 

No. Selected Stations Latitude Longitude Earliest 
Year 

Most 
Recent 
Year 

Elevation  
(m) 

Mean 
(mm) 

Variance Skewness 

1 Barrie Other 44.38 -79.69 1968 2007 221 23.41 71.43 0.77 
2 Fergus S. D. Other 43.73 -80.33 1960 2007 417.6 27.1 230 2.1 
3 Hamilton A Tor. 43.17 -79.93 1970 2006 237.7 25.8 142.3 2.26 
4 Kingston P. station Other 

 
44.24 -76.48 1960 2007 76.5 20.9 52 0.37 

5 London Airport Other 43.03 -81.15 1960 2002 278 24.4 78.6 0.6 
6 Oshawa WPCP Tor. 43.87 -78.83 1969 2007 83.8 20 71.2 0.50 
7 Toronto Tor. 43.67 -79.4 1937 2002 112.5 24.6 117.6 0.76 
8 Toronto P. Airport Tor. 43.68 -79.63 1960 2013 173.4 24.5 77 0.50 
9 Trenton Airport Other 44.12 -77.53 1964 2013 86.3 20.1 82.8 1.9 
10 Windsor Airport Wind. 42.28 -82.96 1960 2007 189.6 28.9 112.5 0.86 
11 Chatham WPCP Wind. 42.39 -82.22 1983 2007 180 27.9 65.3 0.44 
12 Harrow CDA Wind. 42.03 -82.9 1966 2001 190.5 28.8 136.5 0.98 
13 Ann Arbor (NOAA) Wind. 42.29 -83.71 variable variable 274.3 26.36 143.24. 0.9 
14 Howell (NOAA) Wind. 42.59 -83.93 variable variable 279.5 25.26 85.69 1.5 
15 Marion (NOAA) Wind. 40.62 -83.13 1949 2000 294 26.56 97.79 2.1 
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Figure 1: Location map of selected stations in Southern Ontario. 
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3. METHODS AND DATASETS 

3.1. Overall approach 

The development and comparative analysis of the IDF statistics presented in this report involved 

several different steps as described in Figure 2 and can be summarized as follows. 

1. Literature review of techniques for updating IDF curves: First, emerging techniques 

for updating IDF curves based on projected climate change scenarios were reviewed. 

From this literature review (see Appendix 1 for a summary of literature review), the “delta 

change” (DC) approach and “bias correction” (BC) methods for model output bias 

correction and local downscaling have been selected for model output bias adjustment 

and local downscaling. Both the delta change and bias correction methods were selected 

based on their performance in previous studies (e.g. Ines and Hansen 2006; Olsson et 

al. 2012; Samuel et al. 2012; Chen et al. 2013, and others see Appendix 1).  

It should be noted that two other approaches (Srivastav et al. 2014; Wang and Huang, 

2014) recently proposed for generating future IDFs are not included in the literature 

review because they were not available when this work was initially completed. Given 

that the work in both Srivastav et al. (2014) and Wang and Huang (2014) has resulted in 

the development of online data tools for practitioners to use in order to access future IDF 

curves, a description of these is included as follows. This discussion is provided to assist 

the reader in understanding how these recent developments compare with the analysis 

conducted in this study and other existing datasets. 

 

These methods include a variant of quantile matching (or mapping) methods employed 

in the IDF_CC Tool (Srivastav et al. 2014) and a dynamical downscaling approach used 

in the Ontario Climate Change Data Portal (Ontario CCDP) (Wang and Huang, 2014). 

Both methods use the Gumbel distribution for deriving the IDF curves. In the IDF_CC 

Tool, in addition to the Gumbel-based quantile mapping, a linear relationship is assumed 

and used to generate future IDFs (see Srivastav et al. 2014 for more details). In the 

Ontario CCDP, a dynamical downscaling model, called the PRECIS model from UK Met 

Office Hadley Centre, is used at 25x25 km spatial resolution to generate hourly rainfall 

data directly used to develop the future IDF curves (see Wang and Huang, 2014 for more 

details). These datasets represent important new developments in the derivation of future 
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IDF curves, however from the perspective of understanding the range of variability in IDF 

curves due to uncertainties in future climate projections, these simply add new data to 

the overall spread of exiting information. Although there are significant uncertainties in 

the historical IDF values, there are greater uncertainties and limitations associated with 

the new climate change datasets that can be summarized as follows: 

 

- With respect to the dynamical downscaling procedure used Wang and Huang 

(2014), it has been shown that at a spatial resolution of 25x25km, additional 

downscaling may be required to capture local scale atmospheric and physical 

processes (e.g. convective cells, orographic effects) that drive extreme 

precipitation. It may not be possible to project the shortest duration events due to 

the limitations in models to capture patterns and trends in fine convective activity 

over time.  Fine scale regional climate models are better suited and likely to be 

successful in resolving orographic influences, provided that sufficient baseline 

(ground truth) data is available to calibrate these orographic effects. The baseline 

data on convective influences will always be limited unless input data densities are 

relatively high. (Barsugli et al. 2013; see http://www.gfdl.noaa.gov/climate-model-

downscaling). “Over time, high-resolution GCMs and advances in model 

formulation will reduce these impediments, but the myriad of climate impacts 

questions makes it unlikely that even these improved models will be able to 

effectively address all scales and applications of interest” (Barsugli et al. 2013; 

http://www.gfdl.noaa.gov/climate-model-downscaling). 

 

- A source of uncertainty associated with quantile mapping approach as used in the 

IDF_CC tool is in that method’s inability to deal with future extremes that may be 

outside the range of observed data (Chen et al. 2013). The use of a constant 

extrapolation based only on the single highest quantile for extremes may not 

effectively capture the extreme tail of the precipitation distribution (Maraun et al., 

2010). Furthermore, assuming a linear relationship between daily and sub-daily 

precipitation for temporal downscaling as proposed in the IDF_CC tool (Srivastac 

et al. 2014) is a significant source of uncertainty, given the nonstationary nature of 

future extreme precipitation. For example, stochastic or nonlinear methods for 
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temporal disaggregation as used in Nguyen et al. (2007) or Hailegoergis et al. 

(2013) present alternative approaches.  

 

2. Historical precipitation data collection and analysis: Rainfall data are then 

collected at different stations across the selected study areas. Those observed data 

have been pre-processed and analyzed for trend detection using Mann-Kendall (MK) 

trend test (Mann 1945, Kendall 1975). The purpose of the Mann-Kendall test is to 

statistically assess if there is a consistently upward or downward trend of the variable 

of interest over time. This is simply part of common exploratory data analysis although 

there is no objective way to discriminate trends among natural climatic trends, 

anthropogenic driven changes, and sampling variability. This is described further in 

Section 3.2 

 

3. Evaluation of distribution functions: Many studies pertaining to IDF curves in 

Ontario (see Appendix 1), including Srivastav et al. (2014), Paixao et al (2011) and 

Wang and Huang (2014) have used the Gumbel distribution as compared to other 

possible distribution functions to develop their IDF curves. The use of the Gumbel 

distribution is attributed to the fact that it has been used by Environment Canada 

across Canada. That being said, to the best of our best knowledge, the performance 

of other possible distribution functions over Ontario has not been fully tested. The most 

extensive analysis so far was done by Paixao et al. 2011. They examined five 

distribution functions, the generalized logistic (GLO), the generalized extreme value 

(GEV); the normal (NO); the Pearson Type III (PE3), and the generalized Pareto 

(GPD) using one goodness-of-fit (Z statistic) test. It was found that the GEV and GLO 

were the best fit to the data based on the Z statistic condition for 53 of the 81 cases.  

 

It is now well documented that the performance of a statistical distribution function can 

vary from one region to another and even from one rainfall duration to another 

(Hailegeorgis et al. 2013, Paixao et al, 2011). In a recent study on the estimates of 

changes in design rainfall values for Canada (Burn and Taleghani, 2013), it was shown 

that the Gumbel distribution performed the least robustly compared to all others 

examined. A similar comparison was done for southern Ontario in Paixao et al, 2011 

with similar conclusions, although Gumbel did work reasonably well for some small 

regions in southern Ontario. Given these findings, a thorough comparison of these 

Future IDF Curve Comparison | 9 



distributions was undertaken to identify the most appropriate distribution function for 

the areas in question in this study. This evaluation was completed by fitting different 

distributions to each station observed data and then determining how they rank based 

on several different goodness of fit criteria. Ultimately the best fit distribution function 

was then selected for generating future IDF curves. Additional details on this analysis 

are provided in Section 3.3 of this report. 

 

4. Future precipitation dataset identification and processing: Given the range of 

potential future precipitation datasets available for southern Ontario, a critical step was 

selecting a subset of datasets from climate change model outputs to compare through 

this study. For the future climate projections, different time periods and different 

scenarios are considered depending on the outputs available for each climate model. 

The criteria and process of future scenario selection is described in more detail in 

Section 3.4. In general, the performance of the climate models, the temporal resolution 

of the data; and the data availability were among the main criteria used in the future 

scenario selection. 

 

5. Development of historical and future IDF curves: Finally, the selected distribution 

is then used to establish the projected IDF curves for different storm durations and 

return periods using both bias correction (BC) technique and a delta change (DC) 

method. 
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Figure 2: Flowchart of the different steps in the development of the projected IDF curves.  
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3.2. Short, medium and long duration rainfall records 

For the maximum rainfall data collection, different storm durations have been considered. This 

includes the typical time of concentration for small urban watersheds (durations of 15 and 30 

minutes) and the typical time of concentration for larger rural watersheds (durations of 1, 2, 3, 6, 

12, and 24 hours) (Bougadis and Adamowski 2006).  The 15 stations used for the IDF curves 

development are selected based on the quality and record length of the data and also by taking 

into account the spatial distribution of the stations. Apart from three stations (Ann Arbor, Howell, 

Marion) all the maximum annual rate of rainfall data for the different storm durations have been 

provided by Environment Canada through its historical climate data archive. The datasets used 

were created from the DLY02 and DLY04 precipitation records. These data have been previously 

quality controlled by Environment Canada and erroneous records flagged. Observed data at the 

other three stations were downloaded from NOAA website at: 

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_series.html. This dataset has also been quality 

controlled by NOAA. 

As an example, Figure 3 presents the annual maximum precipitation for 15-minute, 30-minute 

and 1-hour duration events for Hamilton Airport, Toronto Airport, and Windsor Airport. The 

temporal variability of these time series does not show a clear linear trend for Hamilton, but for 

both Toronto and Windsor, there is slight apparent linear decreasing trend. To further assess 

trends in the extreme rainfall data, the Mann-Kendall trend test is applied to all station data and 

for all durations. The test results are presented in Appendix 2 although they don’t have a direct 

implication in the IDF development, they are part of the common exploratory analysis which is 

used to assess whether there are some inconsistencies in the datasets. For example a decreasing 

trend followed by an increasing trend in a same time series will indicate an inconsistency that 

would require further investigation.  The trend analysis results indicate that there is no 

inconsistency in the datasets.  In general both increasing and decreasing trends are found 

statistically “non-significant” at 95% confidence level. These trend test results should however, be 

taken with caution because (a) there is no objective way to discriminate trends among natural 

climatic trends, anthropogenic caused changes, and sampling variability; (b) a minimum of 25 

years of records is required for a reliable trend analysis given the strong temporal variability of 

sub-daily extreme precipitation time series (Bengtsson and Milotti 2010); (c) Mann-Kendall test 

assumes independence of time series from year to year and therefore cannot be properly applied 

in the presence of persistence induced by low-frequency oscillations (e.g. annual, decadal and 
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multi-decadal climate oscillations) (Coulibaly 2006, Willems and Yiu 2010; Willems et al. 2012). 

That being said, previous studies have provided evidence of increases in the longer duration 

synoptic processes associated with extreme precipitation in southern Ontario (Cheng et al. 2011, 

2010). 

A dilemma for many water practitioners is the decision on how to proceed when short duration 

extreme rainfall trends are downwards while indications under climate change are for increases 

in intense rainfall events, including decisions on whether to adopt the more recently updated but 

decreased IDF values in light of projected increases for future periods. Many influences can lead 

to downward trends when updating historical IDF values, including: changes in rainfall quality 

control procedures that screen out anomalously high extreme values, instrument and data 

recording/logging practices, changes in extreme value statistical analyses techniques, use of 

different distribution density functions, analyses procedures for missing data, atmosphere-ocean 

‘oscillation’ influences on the climatology, relative changes in the contribution of fine scale 

convection rainfall events, etc.  Some guidance in such situation would be to avoid change to the 

updated lower IDF value for now (Paixao et al. 2011) which may not be appropriate in the absence 

of a systematic uncertainty analysis.  Based on the findings herein (to be discussed in section 

4.3), major change to design standards is not recommended until further study including regional 

IDF and statistical uncertainty analysis are completed on the area of interest. 
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Figure 3: Plots of maximum annual precipitation for short durations at Hamilton, Toronto, and 
Windsor Airports. 
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3.3. Comparison of distribution density functions 

The establishment of IDF statistics requires the use of a cumulative distribution function to 

estimate the rainfall intensity for the different return periods. Since the use of different 

distribution functions can provide very different results, the selection of an appropriate 

theoretical distribution is an important step in this process. From the comprehensive literature 

review completed (see Appendix 1), the most commonly used distribution functions were 

selected for further investigation in the study area. Specifically, the following distributions 

functions were fitted to the maximum annual rainfall using the maximum-likelihood and L-

moment method for the parameter estimation:  

• Weibull; 

• Gamma; 

• Normal or Gaussian; 

• Lognormal; 

• Gumbel (EV1); 

• Generalized extreme value (GEV); and 

• Log-Pearson type 3 (LP3) 

For all stations, different storm durations are considered. The fitting quality is evaluated using 

eleven different goodness of fit criteria, including the Akaike Information Criterion (AIC), the 

Kolmogorov-Smirnov and the Chi square goodness of fit criteria, as well as the quantile-quantile 

plot and the L-moment diagram. The complete list and detailed description of all the eleven 

goodness of fit criteria used are presented in Appendix 3. The AIC is among the most widely 

used criteria in model selection (Kuipper and Hoijtink, 2011) and represents a relative estimate of 

information lost when a given model is used to represent a process that generates the data, and 

therefore allows to rank multiple competing models used to approximate the unknown truth 

(Symonds and Moussalli, 2010). The L-moment diagram (Anctil et al., 2005, Meylan et al. 2012) 

and the quantile-quantile plot (Opere et al. 2006) are simple and practical goodness of fit criteria 

that can be used to compare and select suitable statistical distribution. The best distribution is 

selected after all candidates are evaluated and ranked based on those different criteria. No 

previous study has conducted such a thorough evaluation of distribution functions on extreme 

rainfall for short, medium and long durations in Southern Ontario. 
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3.4. Future climate datasets and downscaling methods 

 Future Datasets 

Three regional climate models (RCMs) and two global climate models (GCM) outputs have been 

considered in this study. The specific datasets analysed are the fourth generation of the Canadian 

regional climate model (CanRCM4) driven by the second generation of Canadian earth system 

model (CanESM2), the third generation of Canadian regional climate model (CRCM3) driven by 

the Canadian Global Climate Model 3 (CGCM3), and the third generation of the Hadley Center 

regional climate model (HRM3) driven by the HadCM2. In addition, based on the results of the 

Fifth Coupled Model Intercomparison Project (CMIP5), the GCMs HadGEM2-ES and the MIROC-

ESM are selected. The MIROC-ESM was selected based on the fact that it was among the best 

performing models for eastern North America (Sheffield et al. 2013; Kharin et al. 2013) and the 

HadGEM2-ES model was selected because its performance and the fact that it is commonly used 

in Ontario for climate change impact studies (e.g. Peck et al. 2012; Samuel et al. 2012; Das et al. 

2013; Wang and Huang 2014).  Additionally, the HadGEM2-ES model data was selected because 

of the availability of their outputs for the required short-duration (e.g. hourly) temporal resolution 

(see Table 2 below). 

The data outputs of each of those models are downloaded for the current and future time periods 

and at the highest temporal resolution available. For the climate model using the Representative 

Concentration Pathways (RCPs), the scenario RCP4.5 and RCP8.5 have been selected to assess 

both the medium and high greenhouse gas emission scenarios. In addition, for the CRCM3 and 

HRM3, the often referred to as “business as usual” or A2 scenario of the Special Report on 

Emissions Scenarios (SRES) (IPCC 2001, Nakicenovic et al., 2000) was selected because of 

data availability and for comparison purpose. The SRES A2 scenario has been the most widely 

used by different climate modeling groups (Maurer 2007) including the CMIP3 (Covey et al. 2003) 

which allows inter-comparison of different climate model results.  

The RCP8.5 is characterized by increasing greenhouse gas emissions over time while the 

RCP4.5 is a stabilization scenario (Detlef et al., 2011). The list of those different climate models 

along with the experiments and time periods available is presented in Table 2.  
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Table 2: Climate models and experiments selected 

Climate Model 
Model 
Spatial 
Resolution 

Scenario Temporal Resolution Simulation Period 

CanRCM4-
CanESM2 
 

40 km Historical 1 hour 1950-2005 
RCP4.5 1 hour 2006-2100 
RCP8.5 1 hour 2006-2100 

CRCM3-CGCM3   50 km Historical 3 hours 1968-2000 
SRES A2 3 hours 2038-2070 

HRM3-HadCM3   50 km Historical 3 hours 1968-2000 
SRES A2 3 hours 2038-2070 

HadGEM2-ES   1.25 × 1.875 
degrees 
(approx. 120 
x 139 km) 

Historical 3 hours 1960-2005 
RCP4.5 3 hours 2026-2045 and 2081-2099 
RCP8.5 3 hours 2026-2045 and 2081-2099 

MIROC-ESM   1.4 x 1.4 
degrees 
(approx. 150 
km) 

Historical 3 hours 1960-2005 
RCP4.5 3 hours 2026-2045 and 2081-2100 

RCP8.5 3 hours 2026-2045 and 2081-2100 

Note: All RCMs are run to conform with standard NCEP boundaries as part of NARCAAP and 

CORDEX experiments (see Cordex website: http://www.cordex.org/), and GCM grids are 

established using standards from the WCRP.  CORDEX is a WCRP project. 

 

Data from regional climate models are downloaded at the three closest grid points of each station 

and the inverse distance weighted average is calculated. For the GCMs, because of their coarse 

spatial resolution, data are downloaded at the closest grid point. Apart from the CanRCM4 which 

has 1-hourly data, all the other models have 3-hourly data and in order to get data for different 

storm durations to match the observed data, we first applied aggregation method to the 

continuous precipitation to get lower resolution data and then derived the higher resolution data 

from the 24-hourly data using the ratio formula first introduced by Hershfield (1961), and adapted 

by Huff and Angel (1989) and Coulibaly and Shi (2005). This method has been largely used in 

the literature (e.g. Rahmani et al. 2014; Gensini et al., 2011; Coulibaly and Shi 2005, and others) 

and was preferred because it appears appropriate where sub-daily (hourly) data are not available. 

Given that the selected climate models don’t always have the same projected time periods, three 

time slices have been selected to allow a consistent inter-comparison and analysis of the 
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projected IDF. Those future time periods for the selected climate models are presented in the 

Table 3 along with the different climate models and scenario. Each climate model scenario is 

downscaled using both Delta change (DC) and Bias correction (BC) techniques (as described in 

section 3.4.2, below). Therefore, for each station an ensemble of IDF projections are generated. 

In this study, each ensemble represents 32 possible IDF curves. 

 

Table 3: Time periods used for the projected IDF along with the model and scenarios 

Projection 
(time periods) 

Climate Model                             Scenario                                 Downscaling 

The 2030s  (2026-2045) 
(12 IDF projections per 
station) 

HadGEM2-ES  RCP4.5  BC & DC 
RCP8.5 BC & DC 

MIROC-ESM  RCP4.5  BC & DC 
RCP8.5 BC & DC 

CanRCM4-CanESM2  RCP4.5  BC & DC 
RCP8.5 BC & DC 

The 2050s  (2038-2070) 
(8 IDF projections per 
station) 

CRCM3-CGCM3  SRES A2 BC & DC 
HRM3-HadCM3  SRES A2 BC & DC 
CanRCM4-CanESM2  RCP4.5  BC & DC 

RCP8.5 BC & DC 

The 2080s  (2081-2100) 
(12 IDF projections per 
station) 

HadGEM2-ES  RCP4.5  BC & DC 
RCP8.5 BC & DC 

MIROC-ESM  RCP4.5  BC & DC 
RCP8.5 BC & DC 

CanRCM4-CanESM2 RCP4.5  BC & DC 
RCP8.5 BC & DC 

Note: For each station an ensemble of 32 IDF projections are generated. 
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 Downscaling Methods 

While regional climate model output represents dynamic downscaling of global climate model 

output, for many applications such as the derivation of IDF statistics, additional spatial and 

temporal downscaling may be required (Sharma et al. 2011; Lafon et al. 2012; Barsugli et al. 

2013; Chen et al. 2013). As indicated in Section 3.1, the downscaling approaches selected in this 

study are the Delta change (DC) and the bias correction (BC) methods. The Delta change 

approach used herein is an enhanced version of the DC method first introduced by Olsson (2009). 

It is a simple but robust method for developing climate change information, and has been selected 

and implemented with the EU-project SUDPLAN (Sustainable Urban Development Planner for 

Climate Change Adaptation) (SUDPLAN, 2012). 

In this DC approach, there is no need to match climate simulations to observations. The climate 

projections are used directly to estimate the change in design storm, and this change is applied 

to the historical intensities (Olsson et al., 2012). For a given combination of duration and 

frequency, the projected design storm Ip can then be expressed as: 

 𝑰𝑰𝒑𝒑 = 𝑰𝑰𝒐𝒐
𝑰𝑰𝒇𝒇

𝑰𝑰𝒄𝒄
 Eq. (1)  

Where If  and Ic  are design storms (or intensity of a rainfall event for a given duration and return 

period) estimated using climate model simulations for current and future time period  respectively 

and Io is the design storm based on observed rainfall data. The key advantages of this method 

are that the main features (temporal and spatial variability) of the original time series are 

preserved and the bias inherent in climate model simulation is reduced (Olsson et al., 2012). In 

the particular case of IDF curve development where the main variable is sub-daily (even sub-

hourly) data, this method is usually preferred to the other methods that are based on statistical 

relationships between variables or different durations. The rationale is that the performances of 

downscaling approaches based on statistical relationship become very limited when using sub-

daily data due to the fact that the statistical properties of recorded station rainfall strongly diverge 

from the properties of grid-scale rainfall from climate model output when the time scale decreases, 

leading to a decrease in the strength of relationship between those two different scale variables 

(SUDPLAN, 2012). Because of its multiple advantages, this Delta change approach was recently 
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retained as the most appropriate rainfall downscaling method in the EU-project SUDPLAN 

(http://sudplan.eu). 

In the bias correction (BC) method, a cumulative probability distribution function of simulated 

rainfall is adjusted to measured rainfall at meteorological stations, by assuming that both observed 

and simulated probability distribution functions are well approximated by a theoretical probability 

distribution function (Andrej and Kajfez-Bogataj, 2012). The first step in this method is therefore 

the selection of the appropriate theoretical probability distribution function that best approximates 

both observed and model-simulated rainfall. The BC method improves climate model simulations 

by correcting bias in model output data (Piani et al. 2010; Ines and Hansen 2006; Samuel et al. 

2012) and became popular because of its performance and straightforward application. Inter-

comparison studies have shown that distribution-based bias correction methods significantly 

outperform other bias correction techniques such as the moments-based (i.e. based on mean or 

standard deviation) and the regression-based techniques (Themebl et al. 2010; Teutschbein and 

Seibert 2012; Lafon et al. 2012; Chen et al. 2013). Samuel et al. 2012 have shown that Gamma 

distribution based bias correction is effective in correcting errors in GCM daily precipitation in 

Northern Ontario.  

In this study, the BC method used is adopted from Samuel et al. 2012 to this context where only 

the precipitation intensities are corrected using the cumulative density function (CDF) of the GEV 

distribution, which was the most robust method according to the eleven tests described in Section 

3.3. In fact, in this context of the IDF curves development, we are dealing typically with maximum 

annual rainfall for different storm durations and there is no need to correct precipitation frequency. 

For the bias correction implementation, the GEV distribution with three parameters is first fitted to 

observed and current model maximum annual rainfall intensities. Then the CDF of the GEV 

distribution (Eq.2) fitted to the current model data is mapped to the CDF of the observed data as 

shown in Eq. (3): 

 F(x; μ,σ,k) = exp �− �1 + k (x−μ)
σ

�
−1
k � 

Eq. (2)  

 F(x;μ,σ,k) = ∫ f(t)dtx
x�     Eq. (3)  
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where k, µ and σ  are the shape, location, and scale parameters of GEV distribution, respectively. 

The parameters are determined using the Maximum Likelihood Estimation function (available in 

MATLAB Statistical Toolbox 2014). The bias corrected maximum annual rainfall intensity for the 

year k2 was calculated by substituting the fitted GEV CDFs into Eq. (4) as follows: 

 𝐼𝐼𝑓𝑓_𝑏𝑏𝑏𝑏(𝑘𝑘2) = 𝐹𝐹𝐼𝐼𝐼𝐼
−1(𝐹𝐹𝐼𝐼𝑓𝑓(𝑘𝑘2)) Eq. (4)  

Where FIf(k2) is the CDF of future maximum annual rainfall intensity and FIo is the CDF of the 

observed annual maximum rainfall intensity. 
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4. RESULTS 

4.1. Identified distributions 

By considering all the eleven goodness of fit criteria presented in Appendix 3, the “best” and 

“second best” distributions for each station are identified. For the observed data, the GEV 

distribution is by far the best fit distribution followed by the lognormal distribution. Both 

distributions present a good fitting quality. Some of the other distributions (e.g. Gam, N) also 

present acceptable fitting quality for some stations, except the Gumbel distribution (EV1) and to 

a lesser extent the Weibull distribution. Similar findings on Gumbel distribution were reported by 

Burn and Taleghani (2012). The two best distributions for each station and for the different storm 

durations are presented in the Table 4 It is noteworthy that these results (Table 4 are not immune 

to uncertainties in the extreme rainfall data due to missing and/or erroneous rainfall extremes or 

quality control procedures. 

The Gumbel distribution appears to be the least robust distribution amongst the set of candidates 

used, particularly when maximum-likelihood (ML) method is used for the parameter estimation. 

Most of the time, this distribution completely mismatches the lower tail of the data (see e.g. Figure 

4, 5). When the distributions are fitted to the climate model data, the fitting quality is not as good 

as in the case of the observed data, but acceptable and GEV distribution still leads the group 

followed closely by the lognormal distribution. Detailed results of all the test results can be found 

in the Appendix to this report. For consistency and also to allow adequate comparison, the same 

distribution function should be used for all the design storms. Given its globally outstanding fitting 

quality for both observed and climate model data, the GEV distribution is then retained for all the 

design storm estimation. 
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Figure 4: QQ-plot of hourly annual maximum precipitation at Toronto and Windsor Airports. Note: 
Gumbel distribution is EV1 (extreme value). 
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(a) Toronto P. Airport 

 

 

(b) Windsor Airport 

 

Figure 5: Histogram plot of 15-min annual maximum precipitation at (a) Toronto Airport and (b) 
Windsor Airport. 
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Table 4: Selected “best” and “second best” fit distributions to the observed data 

DURATION 15-min 30-min 1-hr 2-hr 6-hr 12-hr 24-hr 

STATION Best 2nd 
best Best 2nd best Best 2nd 

best Best 2nd 
best Best 2nd 

best Best 2nd 
best Best 2nd 

best 

Barrie GEV Gam GEV Gam GEV Gam GEV LN GEV LN GEV LN GEV LN 

Fergus S. D GEV LN GEV LN GEV LN GEV LN GEV LN LN GEV GEV LN 

Hamilton A. GEV LN GEV LN GEV LN GEV LN GEV LN GEV LN LN GEV 

Kingston PS. LN N, 
GEV GEV N GEV N GEV LN GEV LN GEV LN GEV LN 

London A. GEV LN GEV LN GEV LN GEV LN, 
Gam GEV LN GEV LN LN GEV 

Oshawa 
WPCP GEV N GEV N GEV Gam, 

N GEV LN, 
Gam GEV LN GEV LN GEV LN 

Toronto GEV LN GEV LN GEV LN, N GEV LN GEV LN, N GEV N GEV LN 

Toronto A. GEV LN, N GEV Gam GEV Gam GEV LN GEV LN GEV LN GEV LN 

Trenton A. GEV LN GEV LN GEV LN GEV LN GEV LN GEV LN GEV LN 

Windsor A. GEV LN GEV LN GEV LN GEV LN, 
Gam GEV LN GEV LN GEV LN 

Chatham 
WPCP GEV LN GEV LN, 

Gam GEV Gam GEV Gam GEV Gam GEV Gam LN GEV 

Harrow CDA GEV N, 
Wbl GEV Gam GEV LN GEV LN GEV LN GEV LN GEV LN 

ANN_Arbor GEV LN GEV LN LN GEV LN GEV, 
Gam GEV LN GEV LN GEV LN 

Howell Gam GEV GEV LN,Gam GEV LN GEV LN GEV LN GEV LN GEV LN 

Marion LN GEV, 
Gam LN GEV, 

Gam GEV LN GEV LN GEV LN, 
Gam LN GEV, 

Gam LN GEV, 
Gam 
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The Generalized extreme value (GEV) is a three parameter distribution and its cumulative 

distribution function can be written as: 

 F(x) = exp �− �1 + k (x−µ)
σ

�
−1
k �  For k≠0 

Eq. (5)  

Where k, µ and σ are the shape, location, and scale parameters. This distribution is widely used 

in hydrology because of its flexibility. In fact, it is a combination of three different distributions 

(specific cases for k=0, k>0 or k<0), and allows an application without any a priori 

assumption/constraint about the value of the parameter k.  

Using the GEV distribution, the current IDF curves obtained from historical storm events for the 

Windsor and Toronto regions for three storm durations namely short (15 min), medium (3 hour) 

and long (12 hour) are presented in Figure 6.  First, it can be seen that in general, Windsor stations 

reveal higher storm event intensities compared to Toronto area stations. Second, storms of short 

duration (15 min) have higher intensities, and conversely storms of longer duration (12-hr) exhibit 

lower intensities. In the Windsor region, station Harrow shows a consistently different pattern 

compared to other stations within the area. This may be due to the specific location of the station 

or the occurrence of a large storm in 1989 that was not recorded in any of the other Windsor area 

stations. However further analysis is needed to substantiate the hypothesis.  
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Figure 6: Variability of historical storm event intensities for all the stations in each study area. Each 
curve is based on the GEV distribution. 
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4.2. Current period estimates 

Although the projected future IDF statistics are established using downscaling methods, the ability 

of the climate models to reproduce the historically observed IDF data should be investigated. It is 

known that one of the biggest challenges in climate change impact studies remains the limitations 

of climate models themselves. Downscaling does not remove all the bias in modeled data and 

therefore the model that best reproduces the historical IDF records is generally regarded as being 

the most robust for producing future projection or as being the best able to capture the atmospheric 

physics associated with past extreme rainfall events (Barsugli et al. 2013).  Conversely, models 

with a less robust ability to reproduce historical IDF values are regarded as being less reliable in 

the development of future IDF estimates. That being said, the IPCC (2014) and recent work by 

Charon (2014) on the use and interpretation of climate projections suggest that no single climate 

model can be regarded as “the best”, or most accurate in term of future climate projections, and 

that all projections should be regarded as plausible. Additionally, in the development of guidance 

for the application of climate model scenarios for water budget modeling under Ontario’s Source 

Water Protection program, the province also advised that no single projection should be used, but 

rather an ensemble of projections (AquaResource, 2011). Similar approaches have been 

presented for the analysis of flood risk in Wilby et al. (2014). The purpose of the model assessment 

presented in this section is not to suggest that one model should be used over another, but rather 

to demonstrate the variability in climate model skill in producing IDF information.  

To analyze and compare the ability of the selected climate models in reproducing the current (or 

historic) IDF in Toronto and Windsor areas, scatterplots are presented in Figure 7. Those graphs 

show that for both Toronto and Windsor areas, the CanRCM4, and to some extent the HadGEM2-

ES and HRM3 outputs capture better the current extreme rainfall events. The MIROC and the 

CRCM3 mostly underestimate the current extreme rainfall events compared to other models while 

the HRM3 estimates are predominately higher than the historic ones. These differences are net 

result of variations in the assumptions and parameterization of the different GCMs and RCMs, 

however additional study is needed to elucidate the specific level of contribution of each factor. 

When comparing both regions, it can be noticed that the climate model current estimates are 

better in the Toronto area than in the Windsor area, particularly for higher-intensity, or more 

infrequent, storms. Those disparities in the models’ performances can be explained mostly by the 

difference in the climate models (e.g. different physical parameterizations, numerical schemes, 

thermodynamic processes, resolutions, etc.) and in part by the varying complexity and frequency 

of storm events/types. It is typically assumed that the climate models with better performance for 
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the current period will provide better results after downscaling as well. Figure 7 also demonstrated 

that, as expected, when these biases are corrected, the overall skill improves significantly. 

However, it should be mentioned that some studies suggest that the practice of picking best 

models may have some pitfalls and use of a larger ensemble is best (e.g. Weigel et al. 2010). 

Some other literature supports the use of best performing models but more literature likely 

suggests rejection of poorly performing models (e.g. Barsugli et al. 2013; Thober and Samaniego 

2014).  

As indicated in Section 3.4, here the best performing climate models in Eastern North America 

(Sheffield et al. 2013; Kharin et al. 2013) were selected. The downscaled results confirm that best 

performing climate models do yield better downscaled results. This is particularly important in the 

context of extreme rainfall events that are usually poorly captured by climate models including 

RCMs (Barsugli et al. 2013). Results shown in Figure 7 also confirm that bias correction is needed 

even for RCM data. 
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Figure 7: Scatterplots of the observed versus modeled and bias-corrected storm intensities for all 
stations in the Windsor and Toronto study areas. Solid points represent the bias-corrected dataset 
(CBC) and the crosses represent the raw current climate model data (CC). 
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We can also notice that the bias between observed and modeled intensities tend to increase with 

decreasing storm duration and increasing return period (Figures 8 and 9). This is not surprising 

since the highest storm intensities are those with the shorter durations and longer return periods 

or convectively driven rainfall processes. From the residual plots in Figures 8 and 9, the most 

robust model outputs are considered to be those with smaller residuals  (i.e. residuals are closer 

to zero line), while the least robust models exhibit larger residuals. Negative residuals indicate that 

the model under-estimates the observations whereas positive residuals indicate over-estimation. 

It can be observed that in general that, based on these criteria, for both the Toronto and Windsor 

regions, HADGEM and CANRCM4 are the “best performing” climate models, while MIROC, 

CRCM3, HRM3 are the lesser performing (MIROC, CRCM3 the worst). It is also notable that in 

general, the models tend to under-estimate historical precipitation more in the Windsor stations 

compared to the stations in Toronto. For the 15-minute and 3-hour storms, almost all residuals in 

Windsor are negative, whereas those in Toronto tend to show positive residuals for some models.
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Figure 8: Residual plots of climate model results for current period for the Windsor region. The closest residuals to the zero line indicate 
the most robust climate model. 
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Figure 9: Residual plots of climate model results for current period for the Toronto region. The closest residuals to the zero line indicate 
the most robust climate model. 
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4.3. Future Projections 

As described previously, future projections of IDF curves are affected by a number sources of 

variability and uncertainty. Within the context of this study, the major sources of variability and 

uncertainty are introduced by: a) selection of climate model, both regional and global, b) selection 

of emission scenario, and d) selection of downscaling techniques. To capture the variability of IDF 

projections, an ensemble of IDF curves are generated using different climate models with different 

forcing emission scenarios and downscaling techniques. This includes three RCMs (CRCM3 and 

HRM3 with A2 SRES scenario, CanRCM4 with RCP4.5, RCP8.5 scenario) and two GCMs 

(HadGEM2-ES and MIROC-ESM with RCP4.5, RCP8.5 each) downscaled using BC and DC 

techniques for three future periods (2050s, 2070s,2100s) and three types of storms (short, 

medium and long duration). As a result, an ensemble of 32 IDF projections are generated for each 

station. 

In some very few cases outliers were introduced into the ensemble  due to extreme values present 

in the climate model projection time series and thus preserved through the downscaling 

(specifically the BC) process. For example some extremely high rainfall intensity values of about 

2 times larger than historical observed values were present in the future IDF results after 

downscaling. It should be noted that the DC method corrects automatically such outliers, thus the 

outliers were only present in the future bias corrected dataset (FBC). A correction was therefore 

applied to remove these outliers prior to the comparison. This correction procedure involved first 

identifying all the outliers (or large values) in the IDF tables, which was done by ordering all the 

values in the database and flagging all extreme values above a threshold of 300 mm/hr which is 

the maximum historical rainfall intensity plus standard deviation. Each value was then manually 

checked by comparing it with the other records for the stations of similar storm types (frequency 

and intensity). Following this, a correction was applied to all projected outliers that were 2 times 

larger than the historic observed value. This correction involved transferring the change ratio 

derived from the current bias corrected data (CBC) to the climate model raw future (CF) predictions 

to obtain the corrected future bias corrected data (FBC). Precisely, when a large FBC value is 

found, it is replaced by (Eq. 6): 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 Eq. (6)  
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Where CC is climate model current value. Despite implementing this correction routine, it is still 

possible that outliers exist within the ensemble due to extreme values in the climate model time 

series for a particular storm type. 

Figures 10 and 11 present boxplots of ensemble IDF curves obtained from all climate models, 

downscaling techniques and emission scenarios for all stations in the study areas of Toronto and 

Windsor respectively overlain with the historically observed data from each station. These plots 

are broken down by future time period. The aim of this analysis is to examine the variability 

associated with the combination of the set of climate model projections and downscaling 

approaches analyzed in this study. The 25th and 75th percentiles of ensemble storm event 

intensities (box plots upper and lower quartiles) show the range of uncertainty after removing 

outliers, as described by the procedure above. Overall, it can be seen (Figures 10 and 11) that 

higher variability in future IDF curves is predicted in Windsor region compared to Toronto area, 

however in both study areas there is a common trend of uncertainty decreasing as storm durations 

increase and return periods decrease. Additionally, despite removing outliers, it appears that the 

Windsor dataset still contains some more extreme values as compared to Toronto, especially for 

the 3-hour storm duration. There also appears to be an outlier value for the 24-hour 100-year 

event in the Toronto study area (Figure 10). 

Overall, it is apparent from Figure 10 and 11 that the variability among climate model projections 

is in general greater than that associated with geographic variability among stations. The 25th to 

75th percentile ranges in Windsor area are also greater than that for Toronto region. For shorter 

return period events (25 years or less), the overall variability range is however about the same for 

both Windsor and Toronto regions. Interestingly, it appears that for 5, 10 and 20 year return 

periods, the future IDF curve variability as shown in Figures 10 and 11 is quite small and might be 

even smaller if worst performing models were rejected or alternatively, only best performing 

climate models (HADGEM and CANRCM4) results were plotted. That being said, the subset of 

projection datasets presented in this study only represents a very small proportion of all possible 

future climate datasets, and as such it is important to look at the overall range of minimum to 

maximum projections presented in Figures 10 and 11. Such an examination reveals that even for 

relatively low-to-moderate-risk storm frequencies that are often considered in roadway drainage 

design (MOE 2003), such as the 10-year 1-hour storm, variability among the climate models 

examined in this study exceeds that associated with inter-station variability in each study area. 

This variability is significant for the more extreme storm events, such as the 15 or 30 minute 

duration storms.  
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Figures 12 and 13 present a comparison of the IDF curve values for a single period (2050s) only 

for the higher forcing scenario of A2 or RCP8.5, depending on the model for the 10 and 25 year, 

and 50 and 100 year return period storms, respectively. This comparison demonstrates that the 

uncertainty is reduced when one considers only one scenario, as compared to Figures 10 and 11, 

which incorporated the A2, RCP4.5 and RCP8.5 scenarios. For both study areas and all storm 

return periods presented in Figures 10 and 11, variability among projections remains the highest 

for shorter-duration events. Interestingly, this analysis shows that almost all future projections for 

the Toronto area are within the bounds of the historical observed data for that study area. That 

being said, if one were only to examine a single station, there would be great variability. The same 

pattern is not visible for the Windsor stations. Figures 12 and 13 demonstrate significant variability, 

above the historical range of all stations in Windsor area for all storm durations of 3-hours and 

below, except for the outlier at the 3-hour duration which is from the Harrow station representing 

a 1989 event recorded only at that location.  

The results in Figure 12 and 13 also demonstrate that the bias correction and delta change 

downscaling methods resulted in almost identical effects in correcting the raw climate change 

model outputs for the Toronto Airport station for the 10 and 25 year events (Figure 12). That being 

said, the bias correction method resulted in lower overall variability at the Toronto study area for 

the 50 and 100 year events. The delta change method reduced the variability more in the Windsor 

study area across almost all storm events. It is also relevant to note that both downscaling methods 

had a much larger effect in Windsor compared to Toronto.  
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Figure 10: Overlay of historical IDF curves for all stations in the Toronto study area compared with 
box plots of the downscaled future IDF curves. Boxes represent the 25th to 75th percentiles of 
projections for each period from the downscaled datasets and whiskers represent the minimum and 
maximum values within the ensemble. 

  

minutes hours 
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Figure 11: Overlay of historical IDF curves for all stations in the Windsor study area compared with 
box plots of the downscaled future IDF curves. Boxes represent the 10th to 90th percentiles of 
projections for each period from the downscaled datasets and whiskers represent the minimum and 
maximum values within the ensemble. 

  

minutes hours 
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Figure 12: Summary of all future projections for the 10 and 25 year return period storms for the 
2050s (2038-2070) for the high-forcing A2 and RCP8.5 scenarios summarized for all stations in each 
case study area. Box plots represent the three future climate datasets of data raw climate model 
output, and downscaled datasets using DC (or AI: adjusted intensity) method and bias-correction 
method. Black dots represent historical values. 

  

Future IDF Curve Comparison | 40 



 

Figure 13: Summary of all future projections for the 50 and 100 year return period storms for the 
2050s (2038-2070) for the high-forcing A2 and RCP8.5 scenarios summarized for all stations in each 
case study area. Box plots represent the three future climate datasets of data raw climate model 
output, and downscaled datasets using DC (or AI: adjusted intensity) method and bias-correction 
method. Black dots represent historical values. 
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5. DISCUSSION AND CONCLUSIONS 

The results of this study highlight the extent of variability associated with using an array of climate 

projections to develop future IDF curves. This variability is due to a wide range of choices in 

distribution functions, climate models, emission scenarios, and downscaling techniques. Results 

of the distribution function evaluation demonstrate clearly that current IDF curves generated with 

a Gumbel distribution may not be the most robust for a given study area. In fact, for both the 

Windsor and Toronto study areas, the GEV distribution produced stronger results which is 

consistent with previous findings based on the evaluation completed using a multi-criteria 

framework of model performance tests (Paixao et al., 2011). This raises an important general 

conclusion, which is that baseline IDF curves based on historic observed data are generated using 

a range of assumptions, which require re-examination in light of the nonstationarity and alterations 

in local precipitation regimes associated with climate change and new data processes such as 

more use of automated data quality control procedures.  This should include the re-examination 

of distribution functions as well as the commonly used methods assume stationarity of rainfall time 

series.  

Based on the ensemble of results developed through this study, the variability among future 

projections should be regarded as significant, resulting in a high level of uncertainty with respect 

to the future IDF curves. This high level of variability is associated with levels of uncertainty, which 

is greatest for short-duration and moderate-to-high return period events, for example the 15-

minute to 1-hour 25- to 100-year storms, making it difficult to interpret a single design threshold 

for water management applications. Shorter return-period and longer-duration events, (i.e., 5-20 

year return-period and 3-24 hour events), were substantially lower in their uncertainty, suggesting 

a useful range of design storm values for practitioners to choose from, albeit with caution. Overall, 

the analysis in this study showed larger variability in future IDFs for Windsor region compared to 

Toronto area, suggesting that it would not be appropriate to transfer results from one location to 

another. Analysis also suggested that there is significant baseline variability among IDF curves for 

a given study area, further reinforcing the conclusions that (1) it is difficult to apply IDF statistics 

from one station to even a nearby one and (2) that relying on a single IDF curve for water 

management applications may not capture the full range of extreme precipitation risk in a given 

area. Ultimately, when one considers the compounding effect of uncertainties in baseline IDF 

curves due to analytical assumptions (i.e., distribution selection, statistical uncertainty, data quality 

control, missing data), natural geographic variability for given study area, and the variability in 

future climate projections, it is reasonable to call for a re-questioning of the levels of risk accepted 
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in stormwater design. In particular, given the assumptions of stationarity inherently implied in IDF 

analysis, it is also reasonable to question the applicability of the current approach for managing 

short-duration and high-intensity events in southern Ontario. These conclusions become even 

more salient considering that the results presented in this study are for a small subset of future 

climate projections that represent the most current best-performing models for the study area as 

per Sheffield et al. (2013). 

Depending on the specific storm event under consideration, the projected changes in the IDF 

curves are quite small for the short term (2030s) and increase after that period when the impact 

of GHGs on the climate becomes more significant. At this stage of the knowledge, for Toronto and 

Windsor regions, it can be suggested that for the future climate datasets evaluated in this study, 

the IDF changes from the GEV distribution and downscaled using either the DC and/or BC 

methods on the HadGEM2-EM and CanCRM4 predictions appear the most robust. The rationale 

is that for longer return periods (> 50 years) and for commonly used rainfall durations (30min, 1hr, 

2hr, 3hr), there is no significant difference between DC and BC in term for future IDF projections 

based on HadGEM2-EM and CanCRM4 data. The choice of the distribution function, the climate 

model and emission scenario appears the most critical in that case.  

Given however, that individual models show large spread in the projected design storms, the use 

of multi-model approach based on best performing climate models (or rejection of the poorest 

performing climate models) based on climatological expertise with climate model performance 

should be recommended in order to extract more robust climate change signals. In addition, 

probabilistic analysis should be performed to quantify the uncertainty related to each step of the 

IDF development process. However, it is essential to first assess the most appropriate and efficient 

climate models and statistical distribution functions for the region of interest. The use of multiple 

emission scenarios is also essential since it is currently unclear which scenario will prevail in the 

future.  

Finally, it is also recommended that future study should investigate the development of regional 

IDF curves using copula techniques to address the issue of nonstationarity in some of the rainfall 

series. A space-time variability analysis of annual maximum precipitation should be first carried 

out to document nonstationarity in the time series, and guidance should be provided for cases 

where recent historical extreme rainfall IDF trends are downwards. This appears essential for 

areas with complex rainfall patterns such as Windsor and Hamilton regions. Given the uncertainty 

in future IDF curves, it is recommended that weight-of-evidence approaches be used when 
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responding to potential extreme precipitation risks at the local scale. Such an approach would rely 

on professional judgement, multiple lines of evidence, and a variety of analytical tools, as is 

typically implemented in risk assessment, to identify and characterize the hazards and 

vulnerabilities associated with extreme precipitation (CSA, 2012). This notion is well captured in 

the concept of resilience, which is often used as a management objective and framework to 

responding to climate risks. Resiliency is typically defined as the ability of a system to withstand a 

range of conditions and maintain its adaptive capacity despite exposure to hazardous conditions 

(adapted from Tyler and Moench 2012; CSA PLUS 2012) and can be achieved through changes 

to infrastructure, policy and through a systems-based analysis of risk. While future IDF curves, 

such as those generated in this study may form part of the evidence base for adaptation to extreme 

precipitation risk, it is also critical that approaches incorporate historical extremes (including 

interpretation and guidance when historical extremes are decreasing), and information on the 

thresholds and vulnerabilities of systems exposed to the extreme precipitation regime in question. 

The corollary for policy and infrastructure decision making is that resiliency-based strategies, 

including characterizing hydrologic responses and vulnerabilities to a range of extreme 

precipitation regimes using a combination of empirical evidence of impacts and dynamical 

modeling, offer the most promising response to climate change, as it effects extreme precipitation. 

 

6. RECOMMENDATIONS  

This study highlighted the complexity of the development of future IDF projections and the various 

sources of uncertainty involved. An important step was completed in the search for adequate IDF 

information for water resources manager in the study areas. This study results bring us among 

the most advanced groups in Canada in term of future IDF development and provide the baseline 

information needed to move forwards, and lead to the following recommendations. 

- Based on this study results, it is recommended that further study is needed in the selected study 

areas to better understand and refine the uncertainties involve in the future IDF statistics. This 

appears necessary before major change in infrastructure design standards in the study areas.  

- Further study should first involve the analysis of non-stationarity in the extreme rainfall series in 

the study areas. It has been recently shown that the assumption of stationarity currently used in 

future IDF development methods may lead to underestimation of extreme precipitation by as much 

as 60% (Cheng and Aghakouchak 2014) which could significantly affect infrastructure design. 
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Second, further study should include the investigation of regional IDF development methods which 

have been recently shown to outperform the single station-based methods (Burn 2014, Cannon 

2015). The regional IDF methods should incorporate non-stationary approaches such as Bayesian 

inference that allows for estimating IDF with their uncertainties. Such study is part of the FloodNet 

Research Program1 and will require active contribution from FloodNet partners in selected study 

areas. 

The development of future IDF statistics adequate for municipal engineers and decision makers, 

is at the frontier of science and engineering, and requires active collaboration between end users 

and experts because the outcome may involve a learning to use a range of values instead of the 

old single number approach.  

 

1http://www.nsercfloodnet.ca 
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7. APPENDIX 1: SUMMARY OF LITERATURE REVIEW 

 

Table A1:  List of Acronyms 

AD Anderson-Darling HadCM Hadley Centre Coupled Model 

AF Adjustment factor HRM3 Hadley Regional Model 3 

AMP Annual Maximum Precipitation K-S Kolmogorov–Smirnov (test) 

ANN Artificial Neural Network LN2 Log Normal distribution with 2 parameters 

AOGCM Atmospheric-Oceanic Global Climate Model LP3 Log-Pearson type 3 distribution with 3 parameters 

ARF Areal Reduction Factor MM5 Fifth-Generation Penn State/NCAR Mesoscale Model 

CGCM Canadian Global Climate Model NARCAP North American Regional Climate Change Assessment 

Program 
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CNCM Community Climate System Model NCEP National Centers for Environmental Prediction reanalysis 

DAI Data Access Integration portal NMSE Normalized Mean Square Error 

EC Environment Canada NOAA National Oceanic and Atmospheric Administration 

EGMAM ECHO-G middle atmosphere model NSRP Neyman-Scott Rectangular Pulses model 

ERA European Reanalysis of Global Climate Observations POT Peaks Over Threshold 

EV1 Gumbel Extreme value type 1 PPCC Probability Plot Correlation Coefficient 

GCM Global Climate Model PSO Particle Swarm Optimization 

GEV generalized extreme value (distribution) RCM Regional Climate Model 

GFDL Geophysical Fluid Dynamics Laboratory RMSE Root Mean Square Error 

GLO Generalized LOgistic probability distribution SDSM Statistical Downscaling Model 
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GPA Generalized PAreto probability density function SRES Special Report on Emissions Scenarios 

GPD Generalized Pareto Distribution WG Weather Generator 

GP Genetic Programming   
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Table A2: Summary table of literature reviewed 

 

Reference Study area Data Methods Major findings 

Lee and Maeng 

(2003) 

Frequency analysis of 

extreme rainfall using 

L-moment 

South Korea − Recorded  daily 

rainfall at 38 

stations 

− Wald–Wolfowitz, Mann–Whitney 

and Grubbs–Beck tests used to 

test respectively independence, 

homogeneity and outlier in data. 

− Fitted GEV, GPA, and GLO 

distributions to data. 

− L-moment ratio diagram and K-S 

test used to appreciate goodness 

of fit. 

− L-moment method used to 

estimate distribution parameters 

− Used Monte Carlo method to 

simulate annual maximum rainfall 

and design rainfall estimated 

based on both observed and 

simulated data. 

− GEV and GLO distributions were the 

most appropriate distribution for all the 

station  

− Design  rainfall derived from GEV 

distribution found to be more reliable 

than those based on GLO distribution 
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Coulibaly and Shi 

(2005) 

Identification of the 

Effect of Climate 

Change on Future 

Design Standards of 

Drainage 

Infrastructure in 

Ontario 

Grand-River, 

Kenora & 

Rainy River 

regions 

(Ontario) 

− CGCM2 under 

SRES-B2 

− Predictors from 

NCEP  

− Recorded 

precipitation at 8 

stations 

− Used Mann-Kendall trend test 

− SDSM used to downscale 

CGCM2 outputs 

− Ratio approach (transformation 

factor) of obtaining shorter-

duration rainfall. 

− Gumbel distribution used for 

frequency analysis. 

− Increasing trends in the annual 

maximum daily precipitation data for 

most stations. 

− Significant changes in the precipitation 

intensity between the current and the 

future time periods. 

− Most of the highway infrastructures can 

be significantly affected by the heavy 

and more frequent rainfall intensity 

predicted. 

− There is a need of recommendations for 

revising the existing design standards 

to account for the changing climate 

conditions. 

Bougadis and 

Adamowski (2006) 

Scaling model of a 

rainfall intensity-

duration-frequency 

relationship 

Eastern 

Ontario, 

Canada 

Recorded data at 

5 stations  
− GEV & Gumbel distributions used 

− L-moments method for parameter 

estimation 

− GEV used as parent distribution 

for the scaling procedure 

− Statistical non-central moments  

over different durations used to 

− Rainfall does follow a simple scaling 

process. 

− Estimates found from the scaling 

procedure are comparable to estimates 

obtained from traditional techniques. 

− Scaled approach was more efficient 

and gives more accurate estimates. 
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examine the scaling properties of 

rainfall data  

 

 

− Scaling approach reduces the amount 

of parameters required to compute the 

quantiles. 

− Scaling estimates are most accurate for 

durations less than 1 h and return 

periods less than 10 years. 

− Scaling approach allows statistical 

rainfall inferences from a higher 

aggregation model to a finer resolution 

model  

 

Svensson et al.(2007) 

An experimental 

comparison of 

methods for 

estimating rainfall 

intensity-duration 

frequency relations 

from fragmentary 

records 

Eskdalemuir, 

Scotland 

- Recorded 

hourly data 
− Created modified records 

containing gaps of varying 

degrees from reliable record  

− Applied different blocks and POT 

methods to develop IDF 

relationship with each artificially 

fragmented series based on 

monthly and annual maximum 

values and compared them with 

the ones obtained from the full 

record regarding bias and 

dispersion. 

− When missing data is present, the use 

of monthly maximum data gives better 

frequency analysis estimates than 

annual maximum data. 

− Dispersions are much smaller when 

using monthly maximum series. 

− Dispersions tend to increase with 

increasing return period. 

− The use of monthly maximum is 

recommended when calculating 

quantiles, allowing up to 20% missing 

data in each month. 

Future IDF Curve Comparison | 56 



− Generalized Pareto and EV1 

distributions used with maximum 

likelihood parameter estimate. 

 

 

Mailhot et al. (2007) 

Assessment of future 

change in intensity 

duration–frequency 

(IDF) curves for 

Southern Quebec 

using the Canadian 

Regional Climate 

Model (CRCM) 

Southern 

Quebec, 

Canada 

− Annual May to 

October 

maximum rainfall 

depth (MOAM). 

− CRCM3 

simulation driven 

by CGCM2 

under SRES-A2. 

− Recorded data 

from 51 stations 

 

− Preliminarily analysis of data for 

independency, homogeneity and 

stationarity using Wald-Wolfwitz, 

Wilcoxon and Mann-Kendall tests 

− Fitted data to GEV and GLO 

distributions 

− Used L-moment method to 

estimate distributions parameters. 

− Used Chi-square test and 

parametric bootstrap technique to 

test the adequacy of the 

distributions. 

− Used areal reduction factor (ARF) 

to assess the performance of 

CRCM. 

− Used regional frequency analysis: 

Regional average estimates at the 

grid box scale used to generate 

IDF curves in control and future 

climate 

− No clear indication of non-stationarity in 

all series. 

− Increasing ARF values as a function of 

return period 

− CRCM simulations revealed increase in 

regional MOAM 

− Uncertainties about change increase as 

return periods or durations increase. 

− For a given duration, spatial correlation 

of simulated annual maximum series 

decreases in the future climate. 

− Spatial correlation in future climate is 

very similar for all durations. 

− Reduction of return periods in future 

climate (~halved for 2 and 6 h events). 

− For 12- and 24-h events, reduction of 

return periods in future climate 

decreases as return periods increase. 
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− Control period (1961-1990) and 

future projection (2041-2070) 

− Duration considered: 2- 6- 12- and 

24-h 

 

Nguyen et al. (2008) 

Estimation of Design 

Storms in 

Consideration of 

Climate Variability and 

Change 

 

Quebec, 

Canada 
− HadCM3A2 and 

CGCM2A2 

simulations 

under SRES-A2 

− Recorded 

precipitation at 

15 stations 

(1961-1990) 

− SDSM used for spatial 

downscaling 

− Scaling General Extreme Value 

(GEV) distribution based on scale-

invariance concept used to 

generate sub daily AM 

precipitation ( temporal 

downscaling) 

− Scaling GEV distribution used to 

derive the IDF relationships for 

AM precipitations for different 

durations 

− Non-central moment (NCMs) used 

to estimate GEV distribution 

parameters 

− Future periods considered are 

2020s, 2050s and 2080s with 

(1961-1990) as baseline. 

 

− Scaling GEV distribution has been 

shown to be able to provide accurate 

estimates of sub-daily AM precipitations 

from GCM-downscaled daily AM 

amounts. 

 

− Resulting design storm rainfall 

intensities from HadCM3A2 displayed a 

small decreasing change in the future, 

while those from the CGCM2A2 

indicated a large increasing trend for 

future periods 
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Palynchuk and Guo 

(2008) 

Threshold analysis of 

rainstorm depth and 

duration statistics at 

Toronto, Canada 

 

Toronto, 

Canada 
− Recorded hourly 

rainfall data at  

Toronto Pearson 

Airport (1960-

2001) 

− Developed a storm-event based 

probabilistic models to 

characterize storm depth and 

duration and compared with the 

conventional rainfall depth–

duration–frequency (DDF) 

analysis 

− Applied a Generalized Pareto 

distributions (GPD),  through 

threshold-excess measures of 

rainstorm depth are used to 

characterize storm-event 

− Used maximum likelihood method 

to estimates GPD parameters  

− Goodness-of-fit was evaluated by 

means of the Anderson-Darling 

Statistic 

− Compared the storm-event 

analysis (SEA) procedure with the 

conventional depth–duration–

frequency DDF analysis 

procedure. 

− Generalized Pareto distribution Type I 

is an acceptable model of rainstorm 

depth for long-return period events 

− Comparisons between conventional 

and storm-event analysis (SEA) models 

highlights the improvements and 

benefits of using storm-event-based 

probability distributions 

− The application of threshold-excess 

extreme value analysis techniques to 

storm-event statistics provides a simple, 

statistically efficient means of 

characterizing frequency of extreme 

storm-event depths and durations and 

may be used for the development of 

more representative design storms that 

reflect the frequency of occurrence of 

short duration convective storms more 

accurately 
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Madsen et al. (2009) 

Update of regional 

intensity–duration 

frequency curves in 

Denmark: Tendency 

towards increased 

storm intensities 

Denmark − Recorded rainfall 

data at 66 

stations 

− Updated regional extreme value 

model with new data from 25 new 

stations. 

− Used generalised least squares 

regression (GLS) to evaluate 

regional homogeneity and to 

describe the variability from 

physiographic & climatic 

characteristics. 

− Used L-moment analysis to 

determine a regional distribution. 

− Model was based on partial 

duration series (PDS) method. 

− Calculated goodness of fit 

statistics for different regional 

distributions (generalised Pareto 

(GP), log-normal, gamma, Weibull 

and exponential distributions). 

− Compared results with previous 

analysis. 

 

− GP distribution is the best fit. 

− Regional variability of extreme 

precipitation confirmed. 

− The new L-CV is in general larger 

compared to the previous analysis. 

− General increase in quantiles is 

observed. 

− The increase is more pronounced for 

small and medium durations (<3h) and 

for large return periods. 

− For intensities with durations larger than 

12h, a decrease of about 2-5% is 

observed. 

− Changes were not statistically 

significant compared to regional model 

uncertainties. 

Ben-Zvi A. (2009) Israel − Recorded data 

at 4 stations 

− Derived larger than usual PDS 

from event maxima series. 

− The use of large PDS with respect to 

the AMS and to the commonly practiced 

PDS, would lessen the effect of 
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Rainfall intensity–

duration–frequency 

relationships derived 

from large partial 

duration series (PDS) 

− Fitted generalized Pareto 

distribution (GP) to PDS and used 

Anderson-Darling (AD) test for 

goodness of fit evaluation 

− Compared results with that of 

other distributions (GEV, EV1, LN) 

fitted to PDS and to annual 

maxima series (AMS). 

 

sampling variations, improve accuracy 

of prediction and enable better 

predictions of frequent intensities. 

− Different good fit distributions based on 

AD test mostly predict very similar 

values. 

Huard et al. (2010) 

Bayesian estimation 

of intensity–duration 

frequency curves and 

of the return period 

associated to a given 

rainfall event 

Quebec − Recorded data 

at 6 stations 

− GEV distribution is considered. 

− Used Bayesian inference analysis 

to study uncertainties and 

compared result with 3 classical 

estimators [maximum likelihood 

method (ML), the method of 

moments (MOM) and the 

probability weighted moment 

method (PWM)]. 

− Return period estimates are very 

sensitive to hypotheses about the given 

event (Event ever observed or no). 

− The use of classical estimators in IDF 

curve development lead to huge 

uncertainty, particularly for large return 

period. 

− Incorporation of parameter uncertainty 

in the computation of IDF curve and in 

the estimation of the return period by 

using Bayesian analysis is suggested. 

− Bayesian analysis has the advantage 

that hypotheses are clearly stated. 
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Adamowski et al. 

(2010) 

Influence of Trend on 

Short Duration Design 

Storms 

Ontario, 

Canada 
− Recorded data 

at 15 stations 

− Linear regression & non-

parametric Mann-Kendall tests 

used to detect trends. 

− EV1 distribution with moment 

estimators used to develop IDF.  

− Different parts of Ontario show different 

significant trends and tendencies in 

extremes of precipitation. 

− Dominant increasing trend in annual 

extreme precipitation for all durations. 

− The presence of trend in rainfall 

increases the frequency of occurrences 

of extreme event, and for a given 

duration, design storms might occur 

more frequently with return periods 

increase. 

 

Elsebaie I. H. (2012) 

Developing rainfall 

intensity-duration-

frequency relationship 

for two regions in 

Saudi Arabia 

Najran and 

Hafr Albatin 

region 

(Saudi 

Arabia) 

− Recorded 

precipitation for 

different time 

interval 

− Used Gumbel and LP3 

distributions to calculate rainfall 

intensity at different durations and 

return periods. 

− Used chi-square quantity as 

goodness of fit test. 

− Applied logarithm conversion/non-

linear regression to derive IDF 

equations. 

− IDF formula parameter goodness 

of fit is based on R2  

− Results from the two methods showed 

good consistency. 

− Small difference between IDF curves 

obtained by Gumbel & LP3 methods 

− Gumbel distribution gives slight higher 

results 
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Solaiman and  

Simonovic (2011) 

Development of 

Probability Based 

Intensity-Duration-

Frequency Curves 

under Climate 

Change 

City of 

London, 

Ontario 

− 29 scenario from 

AOGCMs (1960-

1990) and 

(2071-2100) 

− Hourly rainfall 

data for several 

stations 

extracted from 

DAI Network. 

 

− Regression and cross correlation 

analysis for station selection  

− Modified historic datasets with 

change fields  before using them 

as input to K-NN based weather 

generator to produce longer 

sequence of rainfall  

− Non-parametric K-nearest 

neighbor approach used for 

disaggregation (downscaling 

based disaggregation) 

− Weather generator integrating 

principal component analysis (in 

order to reduce multi-

dimensionality and collinearity 

associated with the large number 

of input variable) used for the 

downscaling. 

− Additional bias correction is 

applied to the downscaled output 

using a computed correction 

factor. 

− Rainfall patterns will change in the 

future 

− Increase in intensity of future rainfall 

with a varying degree (scenario 

indicates approximately 20 to 40% 

changes in different duration rainfalls 

for all return periods). 

− Recommended the use of the multi-

model approach, rather than a single 

scenario. 

− Generation of future IDF information 

based on single site is limited. 

− Use of the wettest and the driest 

scenario may be useful to capture the 

upper and lower bound scenario of the 

future climate change. 

− Probability based intensity-duration-

frequency curve is encouraged in order 

to apply the updated IDF information 

with higher level of confidence. 

− A kernel based plug-in estimation 

approach is able to incorporate the 

uncertainties arising from different 
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− EV1 adopted (to comply with EC 

procedure) to develop IDF and 

frequency analysis is performed to 

the annual maximum rainfall 

− The IDF relationship is developed 

by fitting the IDF data to a 

continuous function and used 

least square method to estimate 

the equation parameters. 

− Durations 1- 2- 6- 12- and 24-h 

considered 

− Climate change taken into 

account with (1960-1990) as 

baseline and (2070-2100) for the 

projection. 

− Non-parametric kernel estimation 

applied to quantify the uncertainty 

arising from different AOGCM 

scenarios 

AOGCM models and provide a more 

acceptable change in future rainfall 

extremes. 

− Scenarios indicated large uncertainty 

associated with the global climate 

models. 

 

De Michele et al. 

(2011) 

Analytical derivation 

of rain intensity–

Reno basin, 

Italy 
− Recorded data 

at 22 stations 

− Derived IDAF curves statistically 

from statistic properties of event 

maxima of rainfall intensity and 

Lognormal distributed with a 

− The method for the calculation of IDAF 

curves based on the analysis of event 

maxima exhibits better performances 
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duration–area–

frequency (IDAF) 

relationships from 

event maxima 

Poissonian chronology of rain 

events 

− K-S goodness-of-fit test used 

− IDAF curves obtained from the 

event maxima analysis are 

compared to those calculated via 

the annual maxima analysis. 

 

than those based on the annual 

maxima. 

CHENG et al. (2011) 

A Synoptic Weather 

Typing Approach to 

Project Future Daily 

Rainfall and Extremes 

at Local Scale in 

Ontario Canada 

 

Grand, 

Humber, 

Rideau, and 

Upper 

Thames river 

basin, in 

Ontario 

− 3 GCMs 

(CGCM2, GFDL, 

ECHAM5) and 2 

scenario A2 & 

B2 

− Historical 

observation from 

NCEP (1958-

2002) for the 

warm season 

(April–November 

− Observed daily 

rainfall at 

stations 

− Used automated synoptic weather 

typing, cumulative logit and 

nonlinear regression methods to 

develop within-weather-type daily 

rainfall simulation models that are 

used to project possible change in 

frequency of daily rainfall events 

− Regression-based downscaling 

used to downscale GCMs 

simulations 

− Time slices considered were 

(1961–2000), (2046–65), (2081–

2100) 

− Future projections based only on 

daily rainfall  

− Combination of synoptic weather typing, 

cumulative logit and nonlinear 

regression analyses, and regression- 

based downscaling can be useful to 

project changes in frequency of future 

daily rainfall events. 

− Results found that the frequency of 

future daily rainfall events could 

increase late this century due to the 

changing climate projected by GCM 

scenarios.  

− the return values of annual maximum 3-

day accumulated rainfall totals are 

projected to increase by 20%–50%, 

30%–55%, and 25%–60% for the 
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periods 2001–50, 2026–75, and 2051–

2100, respectively. 

− Inter model uncertainties found to be 

similar to the inter-scenario 

uncertainties 

Peck A. et al. (2012) 

Rainfall Intensity 

Duration Frequency 

curves under Climate 

Change : City of 

London, Ontario, 

Canada 

City of 

London, 

Ontario 

− 1 GCM 

(CCSRINES) 

simulation for 

(1961-1990) and 

(2040-2069) 

− 2 climate change   

scenario (upper 

& lower bounds). 

− Recorded data 

at London 

Airport station 

(1961-2002) for 

9 different 

durations 

 

 

 

− Non-parametric K-Nearest 

Neighbor weather generator (WG) 

used to downscale 1 GCM 

(CCSRINES) data and create long 

time series weather data. 

− Two future climate change 

scenario were considered (upper 

& lower bounds). 

− For the upper bound scenario, the 

observed data is modified by 

monthly climate change factors 

(from CCSRINES B21) before 

using them as input into the WG 

− Gumbel Extreme Value Type I 

(EV1) was adopted for the 

quantiles calculation. 

− IDF curves developed by fitting 

the IDF data to a 3 parameters 

− Rainfall magnitude will increase under 

climate change for all duration and 

return periods. 

− For 100-year short duration events, the 

climate change low bound and upper 

bound scenario maximum values are 

respectively up to 35% and 42% higher 

than EC maximum values. 

− Current IDF curves are not sufficient to 

represent future rainfall patterns. 

− Small difference observed (~4.5% on 

average) between upper and lower 

bound climate change scenarios. 

− The increase in rainfall intensity & 

magnitude may have major implications 

on the design, operation and 

maintenance of municipality water 

management infrastructures. 
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continuous function 

recommended by the Ontario 

Drainage Management Manual 

and estimated the parameters 

using least squares method. 

− Compared updated IDF for 

climate change with the existing 

curves posted by EC. 

− Durations 5, 10, 15, 30 minutes 

and 1, 2, 6, 12 and 24 h 

considered 

− Climate change taken into 

account with (1961-1990) as 

baseline and (2040-2069) for the 

projection 

 

− Current IDF should be changed in the 

range of about +20% in order to 

account for climate change. 

 

Burn and Taleghani 

(2012) 

Estimates of changes 

in design rainfall 

values for Canada 

Canada  − 51 rainfall 

gauging stations 

across Canada 

with at least 35 

years of record 

length for each. 

− Analyzed trend and change in 

rainfall data for 9 durations (5 min 

to 24h) by using respectively a 

modified Mann-Kendall rank-

based test and bootstrap 

resampling method. 

− More significant increasing trend 

observed in rainfall. 

− Number of significant trend differs with 

rainfall duration (more for shorter 

duration) 

− Some evidences of spatial grouping of 

trend location, but not consistent. 
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− Performed sensitivity analysis for 

the choice of distribution function 

& length of most recent years. 

− Used Walker’s test to evaluate the 

field of significance. 

− Assessed the suitability of 

different distributions (GEV, GLO, 

GNO, EV1, LP3) to fit the data 

based on PPCC using L-moments 

method. 

− Used the best fitting distribution to 

develop IDF curves. 

− Climate change projection for the 

future not considered in this study. 

− PT3 best fitting distribution (higher 

number of occurrence) and Gumbel the 

worst. 

− Traditional trend analysis (e.g. Mann-

Kendall test) may not be a sufficient 

criterion in detecting climate change 

impacts on design quantiles, particularly 

when the interest is in longer return 

period events (bootstrap resampling 

technique is preferred). 

− When comparing the most recent 20 

years to the entire record, there is 

predominated decreasing trend in the 

return period for longer rainfall duration 

(>1h) and predominated increasing for 

shorter rainfall duration. 

− Overall more increasing than 

decreasing trends in the quantiles are 

observed. 

− The use of IDF curves that are not 

recent could result in an inappropriate 

design of key water infrastructures. 

− Climate change impact on rainfall 

magnitude should be carried out on a 
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local basis, as results can differ even 

for stations in close proximity. 

 

AMEC (2012) 

Development of 

Projected IDF Curves 

for Welland, Ontario 

Welland, 

Canada 
− 16 GCMs (B1, 

A1B, A2) 

− Historical IDF 

curves (EC) 

along with the 

record of the 

intensity of 

annual extreme 

event (1964-

2000) 

− Recorded 

climate data 

(1964-2011) at 

Port Colborne 

station 

 

− Gumbel distribution was fit to the 

historical annual precipitation 

maxima. 

− Applied delta method to calculate 

projected values of precipitation. 

− Used delta method again to adjust 

the historical IDF curves. 

− Developed projected precipitation 

intensity values using delta 

method (adjusted the projected 

change to the historical IDF curve 

from EC) 

− Projected IDF curves based on 

2020s and 2050s future time 

periods. 

− Durations considered ranged from 

5mn to 24h 

− Used a large ensemble of 

projections for uncertainty 

analysis. 

− Delta method reduces the bias inherent 

in climate simulations. 

− There is some model-to-model 

disagreement over the magnitude of 

projected precipitation. 

− All GCMs used are projecting an 

increase in temperature. 

− Existing IDF curves were conservative 

relative to the current estimates and 

even relative to the projected values for 

many duration/return interval 

combinations. 
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Liew et al. (2012) 

Development of 

intensity-duration-

frequency curves: 

incorporating climate 

change projection 

Jakarta, 

Indonesia 
− ECHAM5 

(SRES-A2) 

− Existing IDF 

curves 

− A regional climate model, the 

Weather Research and 

Forecasting (WRF) used for 

downscaling. 

− Bilinear interpolation based on 

moving averaging window used to 

extract rainfall intensity for 

different duration from the WRF 

simulations. 

− GEV distribution selected 

− Applied delta method to generate 

projected IDF curves. 

− Duration considered were 6- 12- 

18 and 24-h 

− Three time slices (2011- 2040), 

(2041- 2070) and (2071-2100) 

considered for projections with 

1961-1990 as base line. 

 

− WRF is an effective tool for dynamical 

downscaling. 

− Increase of about 20% in rainfall 

extremes by 2070. 

 

Karahan H. (2012) 

Determining Rainfall-

Intensity Duration-

Izmir, Turkey − Observed data 

(1938-2005) 

− Used 8 different IDF relationship 

formulas 

− Applied PSO method (using 

Linear Fitness Scaling to control 

− PSO method shows better performance 

than GA when number of parameters 

increases. 
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Frequency 

Relationship Using 

Particle Swarm 

Optimization (PSO) 

objective function) to determine 

formulas parameters 

− MSE used as objective function in 

optimization 

− Compared results with genetic 

algorithm (GA) optimization 

method. 

 

− PSO is an effective tool for obtaining 

good IDF relationship.  

− Length of data set and formulation 

influence model performance. 

Sunyer and  Madsen 

(2012) 

A Comparison of 

different regional 

climate models and 

statistical downscaling 

methods for extreme 

rainfall estimation 

under climate change. 

Copenhagen

, Denmark 
− Four (04) RCMs 

driven by 2 

GCMs (SRES-

A1B) 

− Recorded daily 

preci- pitation at 

1 station (1979-

2007) 

− Used the RCM simulations to 

calculate change factors for all 

statistics needed in downscaling 

methods. 

− Used change factors  as input in 5 

different downscaling methods 

(Markov chain WG, semi-empirical 

WG, NSRP WG, change in mean, 

change in mean & variance) to 

generate time series for the future 

− Analyzed projections for main 

statistics and extreme event 

statistics. 

− The time slice (2071-2100) is 

considered for the future 

− RCM projections need further 

downscaling in order to be used in 

climate change impact studies. 

− Commonly change in mean 

downscaling method is not suitable to 

analyze change in extreme events. 

− Weather generators (WG) downscaling 

method are recommended when 

extreme event are main focus or when 

number of dry/wet days is expected to 

significantly change in the future. 

− Significant part of the uncertainty in 

climate change impact studies is related 

to RCM model chosen. 
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projection with (1979-2007) as 

base line 
− All four RCMs have a tendency to 

overestimate mean and standard 

deviation but underestimate skewness. 

− Change factors derived from the 

different RCMs do not, in general, 

agree on whether one statistic will 

increase or decrease 

 

− There are large uncertainties on the 

statistics for the future obtained after 

statistical downscaling, particularly 

during the summer months, but a 

tendency of an increase of the mean 

precipitation and standard deviation 

during the winter and spring months 

and a decrease of the mean 

precipitation in summer and autumn is 

observed 
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Cheng et al. (2012) 

Possible impacts of 

climate change on 

extreme weather 

events at local scale 

in south central 

Canada 

 

South–

central 

Canada 

− Four GCMs 

(CGCM1, 

CGCM2, GFDL, 

ECHAM5) 

simulation and 

Scenarios A2 & 

B2 

− Historical climate 

data from EC 

and from NCEP 

ranging from 

(1953-2002) 

− Synoptic weather typing and 

regression methods to analyze 

climatic change impacts on 

extreme weather events: 

− Used various statistical methods 

for  preliminarily data analysis and 

for downscaling  

− Principal components and 

discriminant function analysis 

used for future synoptic weather 

type projection and  future 

projections 

− Comparing future and historical 

identified extreme-event-related 

weather type frequencies 

− Three time windows (1961-2000), 

(2046-2065),  (2081-2100) 

considered for the GCMs 

simulation 

− Regression-based downscaling 

methods performed very well in deriving 

future hourly station-scale climate 

information for all weather variables 

− A combination of synoptic weather 

typing, extreme weather event 

simulation modeling, and regression-

based downscaling can be useful in 

projecting changes in the frequency and 

intensity of future extreme weather 

events and their impacts at a local scale 

or station scale. 

 

− Modeled results from these projects 

indicated that the frequency and 

intensity of future daily extreme weather 

events have the potential to significantly 

increase late this century 

Das et al. (2013) 

Distribution choice for 

the assessment of 

Upper 

Thames 

River Basin 

(3842 km2), 

− Hourly rainfall 

data from DAI 

network (1965-

2003) 

− Investigated goodness of fit of 

GEV, EV1 & LP3 distribution 

under climate change and 

address the uncertainty involved 

− GEV distribution is the best fit to the 

synthetic data and EV1 distribution 

should not be used. 
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design rainfall for the 

city of London 

(Ontario, Canada) 

under climate change                       

London, 

Ontario 
− Daily rainfall 

data from EC 

Weather Office 

(1965-2003) 

− Climate data 

from 7 AOGCMs 

under different 

scenario (1961-

1990) & (2071-

2100). 

in extreme value modeling and 

estimation of IDF curve for the 

future: 

− Calculate precipitation change 

factors for future climate and used 

them to modify historic datasets. 

− Modified historic datasets used as 

input into the KnnCAD weather 

generator to produce synthetic 

daily data. 

− Synthetic daily data are 

disaggregated into hourly data by 

means of disaggregation 

algorithm. 

− Adjusted distribution functions to 

maximum annual rainfall series 

produced from the disaggregated 

datasets. 

− Used L-moment ratio diagram, 

AD, Chi-square & K-S goodness 

of fit tests to select the best 

distribution to be used to develop 

IDF curves. 

− Based on historic datasets, EV1  and 

GEV distribution produce similar IDF 

curves, but when taking into account 

future climate data there is a significant 

difference. 

− The use of different AOGCMs and 

different scenario provides for effective 

uncertainty analysis. 

− To account for climate change in the 

future, current IDF curves established 

from the recorded historic data should 

be increase by 30%. 
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− Discussed the results with those 

of EC and those obtained from 

historic perturbed data. 

− Storm durations of 1, 2, 6, 12, and 

24 hours considered 

− IDF curves relationship not 

developed in this study 

 

Kuo et al. (2013) 

The climate change 

impact on future IDF 

curves in central 

Alberta 

Edmonton, 

Canada 
− MM5 driven by 

CGCM3 & 

ECHAM5 under 

SRES-A2. 

− Recorded data 

at 13 rain 

gauges (1984-

2010). 

− Run MM5 with CGCM3 & 

ECHAM5 data. (run for May-

August for 1971-2000 and for 

2041-2100 under SRES A2) 

− Applied quantile-based bias 

correction to simulated 

precipitation. 

− Applied regional frequency 

analysis to estimate precipitation 

extremes at ungauged sites. 

− Fitted GEV distribution to data. 

− Used probability weighted 

moment to calculate distribution 

parameters. 

− IDF curved derived on the basis of 

grid cell in order to compare a 

− More intense heavy rainfall expected in 

future climate 

− Change is greater in the 2080s than in 

the 2050s 

− Relatively increases are noticeably 

higher for the shorter duration (<6h) 

rainfall. 

− In the 2050s, changes are expected to 

be higher for shorter return periods (<10 

years). 

− Current IDF curve is smaller than the 

projected upper bound. 
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large area of IDF curves. 

(Individual grid quantiles were 

obtained from the regional 

frequency analysis  at the grid box 

scale and then bias correction 

was applied) 

− Storm duration range from 15-, 

30-min, 1-, 2-, 6-, 12- to 24-hr 

 

Mirhosseini et al. 

(2013a) 

The impact of climate 

change on rainfall 

Intensity–Duration 

Frequency (IDF) 

curves in Alabama 

State of 

Alabama, 

USA 

− Six (06) 

NARCAP-RCMs 

− Recorded 

precipitation at 

different stations 

from NOAA 

− Dynamically downscaled 6 GCMs  

− Quantile-based mapping method 

used for bias correction 

− Used stochastic method for data 

disaggregation 

− GEV distribution selected to 

estimate precipitation depth for 

the different return periods 

− Applied moment method to 

estimate GEV parameters and K-

S test to evaluate the 

performance of fit. 

− IDF curves under the future 

climate scenarios were compared 

− Disparity in the projections and future 

rainfall intensity decreases or increases 

depending on the return period 

− Decreasing rainfall intensity is expected  

in the future for short durations of 

rainfall (<4h) 

− Projections are not consistent with 

respect to larger events (A large 

uncertainty on the projected rainfall 

intensity makes it difficult to obtain any 

strong conclusion about the expected 

changes on future rainfall intensity) 
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with the IDF curves under the 

current climate 

− The time slice (2038-2070) is 

considered for the future 

projections with (1968-2000) as 

base line 

− Storm durations considered  (15, 

30, and 45 min, 1, 2, 3, 6, 12, 24, 

and 48 h) 

 

Mirhosseini et al. 

(2013b) 

Developing Rainfall 

Intensity-Duration-

Frequency (IDF) 

Curves for Alabama 

under Future Climate 

Scenarios using 

Artificial Neural 

Network (ANN). 

Alabama, 

USA 
− Recorded data 

at 34 stations 

from NOAA 

− Five NARCAP-

RCMs 

− Dynamically downscaled 5 GCMs 

− Quantile-based mapping used for 

bias  correction 

− ANN used for disaggregation and 

performance compared with 

stochastic method. 

− Akaike Information criterion (AIC) 

and NMSE used to select the 

neuron input datasets. 

− NSE & correlation coef. used for 

the ANN performance evaluation. 

− GEV distribution used to create 

IDF curves. 

− ANN model performed very well for 

data desegregation and provide better 

estimation of Max rainfall depths. 

− Stochastic method tends to under-

predict rainfall intensities. 

− The five different climate models did not 

provide identical projections. 

− Decreasing rainfall intensity by 33% to 

74% is expected in the future for short 

durations of rainfall (<2h). 

− Large uncertainty in the projected 

rainfall intensities of longer duration 

events. 
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− Applied method of moments for 

GEV parameter estimation with K-

S test as goodness of fit test. 

− The time slice (2038-2070) is 

considered for the future 

projections with (1968-2000) as 

base line 

 

 

Hailegeorgis et al. 

(2013) 

Regional frequency 

analysis of extreme 

precipitation with 

consideration of 

uncertainties to 

update IDF curves for 

the city of Trondheim. 

City of 

Trondheim, 

Norway 

− Recorded 

precipitation at 4 

stations. 

− Used L-moment method for 

regional frequency analysis. 

− Mann-Kendall & parametric linear 

regression tests used for trend 

and stationarity checking. 

− Discordancy and homogeneity 

tested based on H-statistics. 

− GEV, GLO, P3, GPAR 

distributions considered. 

− Z-statistic & L-moment ratio 

diagrams used for distribution 

function selection. 

− Non-parametric balanced 

bootstrap resampling method 

used to quantify uncertainty. 

 

− Different types of distributions fit to 

extreme precipitation events of different 

durations. 

− Thorough selection of distributions is 

indispensable rather than fitting a single 

distribution for the whole durations. 

− Uncertainty in quantile estimation needs 

to be estimated and incorporated. 

− Large differences between calculated 

and existing IDF curve. 
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Hassanzadeh E. et al. 

(2013) 

Quantile-based 

Downscaling of 

Precipitation using 

Genetic Programming 

(GP): Application to 

IDF Curves in the City 

of Saskatoon 

City of 

Saskatoon, 

Canada 

− GCM3-T47 

(A1B, A2, B1) 

− Historical IDF 

curve data 

(1926-1986) 

− EC-IDF data 

− GP technique used to explore 

equations to map daily AMP 

quantiles at the GCM scale to the 

corresponding daily and sub-daily 

local estimates. 

− Both duration-variant and 

duration-invariant quantile-

quantile relationships were 

explored. 

− Ideal-point-Error (IPE) based on 4 

performance criteria used to 

evaluate the overall performance 

of the mapping equations. 

− Mann-Kendall test used for trend 

checking. 

− Autocorrelation in local sub-daily 

AMP time series removed. 

− GEV distribution selected with 

maximum likelihood and K-S test 

for parameter estimation and 

goodness of fit evaluation 

respectively. 

− Future IDF curves at the local 

scale estimated using the future 

− GP can extract mathematical equations 

to describe the mappings between AMP 

quantiles at the GCM and local scales. 

− The duration-variant mapping equations 

provided more accurate reconstruction 

of the IDF curves for the baseline 

period. 

− Change in future IDF curves depend on 

scenario, storm duration and return 

period considered. 

− Clear increase in quantile for short 

duration storm (<6h) expected in the 

future. 
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estimates from global climate 

models assuming that the 

extracted quantile-quantile 

relationships remain unchanged 

with time 

− Compared IDF curves obtained 

from fitting the GEV distribution to 

the historical data to the IDF 

curves approximated using the 

quantile-quantile equations. 

− Baseline period considered is 

1961-1990 and the future 

projections period is 2010 to 

2100. 

 

Zhu J. (2013) 

Impact of Climate 

Change on Extreme 

Rainfall across the 

United States 

USA − HRM3 

simulation driven 

by HadCM3 

(SRES-A2). 

− NCEP reanalysis 

data 

− Compute adjustment factor (AF)  

according to historic match 

between climate model result and 

reanalysis data. 

− GEV & Gumbel distributions used  

− Used AF to adjust precipitation 

intensity for a given duration and 

return period of future climate 

model results to make projection 

− Dependence of AF values on return 

period and storm duration. 

− Rainfall intensities for future conditions 

consistently higher than historical 

conditions. 

− Impacts of climate change on severe 

storm characteristics would be highly 

local in nature and investigations should 

be carried out at the local level. 
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of potential future intensity for the 

same duration and return period. 

− Baseline period considered is 

1971-2000 and the future time 

period is 2041 to 2070 

− Bootstrap resampling used for 

estimate uncertainty. 

− Much stronger influence of climate 

change on rainfall intensities for short-

duration. 

 

Mailhot et al. (2013) 

Regional estimates of 

intense rainfall based 

on the Peak-Over-

Threshold (POT) 

approach 

Southern 

Québec, 

Canada 

− Maximum rainfall 

depth at 109 

stations for 

durations 

ranging from 5-

mn to 12-h(years 

range from 10 to 

51 years) 

− Developed a regional version of 

the POT approach 

− Threshold values were 

determined by specifying a mean 

number of six threshold excesses 

− Applied a declustering technique 

to eliminate possible temporal 

correlation in POT series. 

− GPD used and parameters 

estimated through joint likelihood 

function 

− Intra-annual variability was taken 

into consideration through a 

Fourier representation of the GPD 

parameters. 

− Intra-annual variability of the 

Generalized Pareto Distribution (GPD) 

parameters needs to be taken into 

consideration 

− Models with spatial covariates widely 

outperformed those without spatial 

covariates 

− Threshold selection is a major issue 

when applying the POT approach and a 

mean threshold excess rate (MTER) 

value of 6 per year have seemed to be 

a reasonable value. 
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− Introduced spatial covariates  to 

describe the spatial dependency 

of parameters 

− Investigated sensitivity of results 

to threshold values and selected 

models 

− Models were selected based on 

the corrected Akaike criterion 

− Durations considered are 5-, 10-, 

15-, 30-min and 1-, 2-, 6- and 12-h 

 

Rodriguez R. et al. 

(2014) 

Influence of climate 

change on IDF curves 

for the metropolitan 

area of Barcelona 

(Spain) 

Barcelona , 

Spain 
− Five GCMs 

(EGMAM, 

CNCM3, 

ECHAM5, 

BCM2, CGCM2) 

− B1, B2, A1B, A2 

scenarios 

− ERA-40 

Reanalysis data 

− Recorded data 

at 6 stations 

(1951-1999) 

− Applied statistical downscaling 

method to generate  daily rainfall 

from CGMs output. 

− Applied 2 temporal downscaling 

methods (Invariance of climate 

change factor & Scaling 

invariance) to obtain sub-daily 

rainfall data from simulated daily 

data. 

− Used empirical exponential 

function to calculate quantiles. 

Parameters estimated by the 

least-squares method 

− Clear tendency toward increased 

extreme daily rainfall. 

− Average climate change factor has 

resulted higher as longer the return 

period is in almost all the scenarios and 

periods considered. 

− Considerable variation depending on 

the GCM and the station that it referred 

to (implying a strong dependence of 

downscaling method with initial 

condition). 

− Climate change factors obtained for 

hourly rainfall are in most of the case 
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 − Used climate change factor for 

comparison and trend analysis. 

− Control period considered is 

1951-1999 and the future time 

period is 2000 to 2099 

 

slightly higher than those calculated for 

daily rainfall.  

 

Asikoglu  and 

Benzeden (2014) 

Simple generalization 

approach for 

intensity–duration–

frequency 

relationships 

Aegean 

region, 

Turkey 

− Recorded 

precipitation at 

20 stations 

 

− LN2 and Gumbel distributions 

adopted 

− Applied Kolmogorov–Smirnov and 

Anderson Darling goodness of fit 

tests.  

− Used moments estimators 

− Used simple generalization 

procedure (SGP) and robust 

estimation procedure (REP) 

based on Kruskal-Wallis test 

statistic to establish IDF 

relationship. 

− Used RMSE for the 2 procedure 

performance comparison. 

 

− Simple generalization procedure (SGP) 

method avoids undulation or 

intersection of IDF curves. 

− SGP gives slightly better estimate of 

rainfall intensities than REP and 

maintains temporal trend in the mean. 
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8. APPENDIX 2: TREND ANALYSIS RESULTS  

(I: Increasing;  D: Decreasing;  N.S: Not significant; S: Significant) 

 

Station Name  Duration Linear Trend Trend Significance p-value 

Ann Arbor 

15 minute I N.S. p = 0.38 

30 minute I N.S. p = 0.30 

1 hour I S p = 0.018 

2 hour I N.S. p = 0.09 

3 hour I N.S. p = 0.22 

6 hour I N.S. p = 0.50 

12 hour I N.S. p = 0.22 

24 hour I N.S. p = 0.22 

Barrie 

15 minute I N.S. p = 0.59 

30 minute I N.S. p = 0.30 

1 hour I N.S. p = 0.32 

2 hour I N.S. p = 0.07 
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3 hour I N.S. p = 0.28 

6 hour I N.S. p = 0.08 

12 hour I S p = 0.04 

24 hour I N.S. p = 0.23 

Chatham 

15 minute I N.S. p = 0.71 

30 minute I N.S. p = 0.74 

1 hour I N.S. p = 0.39 

2 hour D N.S. p = 0.73 

3 hour D N.S. p = 0.38 

6 hour D N.S. p = 0.46 

12 hour D N.S. p = 0.64 

24 hour D N.S. p = 0.38 

Fergus 

15 minute I N.S. p = 0.37 

30 minute I N.S. p = 0.46 

1 hour I N.S. p = 0.24 

2 hour I N.S. p = 0.46 

3 hour D N.S. p = 0.22 
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6 hour I N.S. p = 0.63 

12 hour D N.S. p = 0.81 

24 hour D N.S. p = 0.22 

Hamilton Airport 

15 minute I N.S. p = 0.84 

30 minute D N.S. p = 0.69 

1 hour D N.S. p = 0.26 

2 hour D N.S. p = 0.51 

3 hour D N.S. p = 0.65 

6 hour D N.S. p = 0.50 

12 hour D N.S. p = 0.35 

24 hour D N.S. p = 0.65 

Harrow 

15 minute I N.S. p = 0.46 

30 minute D N.S. p = 0.76 

1 hour I N.S. p = 0.79 

2 hour I N.S. p = 0.87 

3 hour I N.S. p = 0.69 

6 hour I N.S. p = 0.53 
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12 hour I N.S. p = 0.96 

24 hour I N.S. p = 0.69 

Howell 

15 minute D N.S. p = 0.30 

30 minute D N.S. p = 0.78 

1 hour I N.S. p = 0.99 

2 hour D N.S. p = 0.45 

3 hour D N.S. p = 0.12 

6 hour D N.S. p = 0.09 

12 hour D N.S. p = 0.12 

24 hour D N.S. p = 0.12 

Kingston 

15 minute I N.S. p = 0.28 

30 minute I N.S. p = 0.44 

1 hour I N.S. p = 0.59 

2 hour I N.S. p = 0.85 

3 hour D N.S. p = 0.51 

6 hour I N.S. p = 0.99 

12 hour I N.S. p = 0.55 
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24 hour D N.S. p = 0.51 

London Airport 

15 minute D N.S. p = 0.98 

30 minute D N.S. p = 0.72 

1 hour D N.S. p = 0.96 

2 hour I N.S. p = 0.91 

3 hour D N.S. p = 0.29 

6 hour D N.S. p = 0.45 

12 hour I N.S. p = 0.79 

24 hour D N.S. p = 0.18 

Marion 

15 minute D N.S. p = 0.66 

30 minute I N.S. p = 0.96 

1 hour I N.S. p = 0.39 

2 hour I N.S. p = 0.80 

3 hour D N.S. p = 0.66 

6 hour D N.S. p = 0.78 

12 hour D N.S. p = 0.82 

24 hour D N.S. p = 0.66 

Future IDF Curve Comparison | 92 



Oshawa 

15 minute I N.S. p = 0.98 

30 minute I N.S. p = 0.83 

1 hour I N.S. p = 0.78 

2 hour I N.S. p = 0.61 

3 hour I S p = 0.008 

6 hour I S p = 0.008 

12 hour D N.S. p = 0.54 

24 hour I S p = 0.008 

Toronto 

15 minute I N.S. p = 0.65 

30 minute I N.S. p = 0.63 

1 hour D N.S. p = 0.56 

2 hour D N.S. p = 0.49 

3 hour D S p = 0.009 

6 hour D N.S. p = 0.58 

12 hour D N.S. p = 0.38 

24 hour D S p = 0.009 

Toronto Airport 15 minute D N.S. p = 0.12 
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30 minute D N.S. p = 0.10 

1 hour D N.S. p = 0.11 

2 hour D S p = 0.031 

3 hour D N.S. p = 0.45 

6 hour D N.S. p = 0.11 

12 hour D N.S. p = 0.08 

24 hour D N.S. p = 0.45 

Trenton 

15 minute D N.S. p = 0.28 

30 minute I N.S. p = 0.92 

1 hour I N.S. p = 0.25 

2 hour I N.S. p = 0.10 

3 hour I N.S. p = 0.07 

6 hour I N.S. p = 0.12 

12 hour I N.S. p = 0.07 

24 hour I N.S. p = 0.07 

Windsor Airport 

15 minute D S p = 0.021 

30 minute D S p = 0.026 
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1 hour D S p = 0.008 

2 hour D N.S. p = 0.06 

3 hour D N.S. p = 0.38 

6 hour D N.S. p = 0.15 

12 hour D N.S. p = 0.10 

24 hour D N.S. p = 0.38 
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9. APPENDIX 3: DISTRIBUTIONS AND SELECTION CRITERIA 

Distributions investigated 

Based on the literature review results (Appendix 1), all the distributions commonly used in 

Canada for extreme rainfall frequency analysis are selected. In addition, distributions commonly 

used in Eastern United States are also evaluated.  Table A1 provides a list of the distributions 

evaluated for different rainfall durations.  

 

Table A3. List of distributions evaluated 

Abbreviation used Distribution 

GEV Generalized Extreme Value  

N Normal 

LN Log Normal  

Gam Gamma 

EV1 Gumbel Extreme value type1 

LP3 Log-Pearson type 3 

Wbl Weibull 
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Distribution evaluation criteria 

Given that there is no universal single criterion for selecting a distribution, a multi-criteria 

approach is used to identify the best performing distributions. Table A2 hereafter presents 

briefly the criteria used to identify the best distributions.  

 

Table A4.  Distribution evaluation criteria 

 

 Criteria Description 

1 AIC 

AIC stands for Akaike Information Criterion. Founded on the information theory, the 

AIC is among the most widely used criteria in model selection (Kuipper and Hoijtink, 

2011). It is a relative estimate of the information lost when a given model is used to 

represent the process that generates the data, and therefore allows to rank multiple 

competing models used in function approximation or curve fitting (Symonds and 

Moussalli, 2010). Among a set of candidate models fitted to a dataset, the preferred 

model is the one with the smallest AIC value. AIC penalizes the distributions with the 

higher number of parameters, it is a parsimony criterion in favor of Occam's Razor. 

2 PPCC1 

PPCC1 is the linear correlation coefficient between the quantiles of the distribution 

function and the quantiles of the input sample. The quantiles of the input sample are 

computed using Matlab function “quantiles”.  The parameters of the distribution 

function are estimated using the maximum likelihood method. The higher the PPCC1 

value, the better the correlation is. However, the higher correlation coefficient does 

not necessary means that the distribution candidate is a good fit. Both the quantiles of 

the input sample and the quantiles of the distribution function should also be similar, 

resulting in a good spray of points around the line y=x in the quantile-quantile plot 

graph (QQ plot Fit). Therefore the PPCC1 values should be used jointly with the QQ 

plots. 
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3 
QQ plot 

Fit 

Visual appreciation of the fitting quality (G=good, F=fairly good, and P=poor) based 

on the observation of the quantile-quantile plot graph. The quantile-quantile plot is a 

simple and practical goodness of fit method that can be used for selecting suitable 

statistical distributions (Opere et al. 2006).  A good fit of the distribution to the data 

will result in most points been closely aligned on the y=x line. The quantile-quantile 

plot also facilitates the evaluation of the behaviour of the distribution tail. 

4 
Blom & 

Gring 

Visual appreciation of the fitting quality (G=good, F=fairly good, and P=poor) based 

on Blom and Gringorten experimental frequency function graphs. Empirical quantiles 

are estimated using Blom or Gringorten formula and those quantiles are plotted 

against the quantiles of the theoretical probability distribution function. Hence a good 

fit of the distribution to the data will result in most points been closely aligned. Here 

the parameters of the distribution function are estimated using L-moment method 

instead of the Maximum Likelihood method in the aforementioned case of “QQ plot 
fit”. The Blom and Gringorten experimental frequency function graphs are reliable 

visual tools for selecting a distribution (Anctil et al. 2005), and should be used along 

with the related linear correlation coefficients (PPCC2). 

5 PPCC2 

PPCC2 is the linear correlation coefficient related to the Blom and Gringorten ( Blom 
& Gring) experimental frequency function graphs. Characteristics are similar to 

PPCC1 above. 

6 LmDiag 

Another useful visual appreciation tool is the L-moments diagram. This diagram 

consists of presenting in the same graph the L-moments coefficient of kurtosis (L-CK) 

of each distribution as a function of its L-moment coefficient of skewness (L-CV). For 

3-parameter distribution the representation of the L-CK as a function of L-CV will 

result in a curve while for 2-parameter distribution it will be a point. In the same graph 

the point corresponding to L-CK as a function of L-CV for the observed data is 

considered the reference point. The best distribution is the one which curve or point is 

the closest to the reference point (“point of the observed data”). Distributions are 

sorted from 1(best), 2(second best), 3(third)......n(worst). This method of selecting the 

best fit distribution based on the diagram of L-moments has been largely used in the 

literature since its introduction by Hoskin and Wallis (1995).  This method can also be 
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used for regional homogeneity analysis by plotting in the same graph the points 

representing the L-CK of the observed data as a function of L-CV for all the stations.  

7 hist Fit 

Visual appreciation of the distributions fitting (G=good, F=fairly good, and P=poor) 

based on the observation of the histogram. Matlab distribution fitting tool “dfittool” is 

used to match the theoretical density probability function to the histogram of the input 

sample (historical hyetogragh). 

8 H-ks 

H-ks is the statistical test decision for the null hypothesis that the data come from the 

specified distribution, against the alternative that it does not come from such a 

distribution, using the one-sample Kolmogorov-Smirnov goodness of fit test. 
Under this test, the goodness of fit is evaluated by calculating the maximum deviation 

between the theoretical distribution function and the empirical distribution and then to 

compare this deviation to critical tabulated values that depend on both the sample 

size and the significance level (Haan 2002, Opere et al., 2006).  The Matlab function 

“kstest” is used to perform this test with significance level set at 0.05. H-ks = 1 if the 

test rejects the null hypothesis at the 5% significance level, or 0 otherwise (null 

hypothesis accepted). 

9 Pval-ks 

Pval-ks is the P-value of the Kolmogorov-Smirnov goodness of fit test, returned 

as a scalar value in the range [0 1]. It is the probability of observing the test statistic 

as extreme as or more extreme than the observed value under the null hypothesis. 

Small value of Pval-ks (less than 0.05) casts doubt on the validity of the hypothesis 

that the data come from the specified distribution. 

10 H-chiq 

H-chiq is the statistical test decision for the null hypothesis that the data come from 

the specified distribution, against the alternative that it does not come from such a 

distribution, using the chi-square goodness of fit test. Under this test, the 

discrepancy between the observed and the expected number of observations in k 

defined histogram classes is evaluated and then compared to a critical value provided 

in tables at selected significance level (Haan 2002, Anctil et al. 2005). The test 

usually requires a long data series in order to be effective since one should have at 

least 5 observations in each histogram classes. The Matlab function “chi2gof” is used 

to perform this test at significance level set at 0.05. H-chiq = 1 if the test rejects the 

null hypothesis at the 5% significance level, or 0 otherwise.  

Future IDF Curve Comparison | 99 



11 
Pval-

chiq 

Pval-chiq is the P-value of the Chi square goodness of fit test. Idem to Pval-ks 

above. When the data series is not long enough and that the condition of having at 

least 5 observations in each histogram class is not met, Pval-chiq evaluation is 

considered not effective and will result in NaN values that we can see in the case of 

some of the stations. 
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Figure A−1: IDF Curve Comparison for Pearson Airport, 2030s 2−year Return Period Event (10th−90th Percentile)
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Figure A−2: IDF Curve Comparison for Pearson Airport, 2030s 5−year Return Period Event (10th−90th Percentile)
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Figure A−3: IDF Curve Comparison for Pearson Airport, 2030s 10−year Return Period Event (10th−90th Percentile)
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Figure A−4: IDF Curve Comparison for Pearson Airport, 2030s 25−year Return Period Event (10th−90th Percentile)
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Figure A−5: IDF Curve Comparison for Pearson Airport, 2030s 50−year Return Period Event (10th−90th Percentile)
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Figure A−6: IDF Curve Comparison for Pearson Airport, 2030s 100−year Return Period Event (10th−90th Percentile)
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Figure A−7: IDF Curve Comparison for Pearson Airport, 2050s 2−year Return Period Event (10th−90th Percentile)
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Figure A−8: IDF Curve Comparison for Pearson Airport, 2050s 5−year Return Period Event (10th−90th Percentile)
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Figure A−9: IDF Curve Comparison for Pearson Airport, 2050s 10−year Return Period Event (10th−90th Percentile)
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Figure A−10: IDF Curve Comparison for Pearson Airport, 2050s 25−year Return Period Event (10th−90th Percentile)
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Figure A−11: IDF Curve Comparison for Pearson Airport, 2050s 50−year Return Period Event (10th−90th Percentile)
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Figure A−12: IDF Curve Comparison for Pearson Airport, 2050s 100−year Return Period Event (10th−90th Percentile)
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Figure A−13: IDF Curve Comparison for Pearson Airport, 2090s 2−year Return Period Event (10th−90th Percentile)
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Figure A−14: IDF Curve Comparison for Pearson Airport, 2090s 5−year Return Period Event (10th−90th Percentile)
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Figure A−15: IDF Curve Comparison for Pearson Airport, 2090s 10−year Return Period Event (10th−90th Percentile)
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Figure A−16: IDF Curve Comparison for Pearson Airport, 2090s 25−year Return Period Event (10th−90th Percentile)
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Figure A−17: IDF Curve Comparison for Pearson Airport, 2090s 50−year Return Period Event (10th−90th Percentile)
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Figure A−18: IDF Curve Comparison for Pearson Airport, 2090s 100−year Return Period Event (10th−90th Percentile)
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Figure A−19: IDF Curve Comparison for Windsor Airport, 2030s 2−year Return Period Event (10th−90th Percentile)
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Figure A−20: IDF Curve Comparison for Windsor Airport, 2030s 5−year Return Period Event (10th−90th Percentile)
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Figure A−21: IDF Curve Comparison for Windsor Airport, 2030s 10−year Return Period Event (10th−90th Percentile)
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Figure A−22: IDF Curve Comparison for Windsor Airport, 2030s 25−year Return Period Event (10th−90th Percentile)
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Figure A−23: IDF Curve Comparison for Windsor Airport, 2030s 50−year Return Period Event (10th−90th Percentile)
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Figure A−24: IDF Curve Comparison for Windsor Airport, 2030s 100−year Return Period Event (10th−90th Percentile)
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Figure A−25: IDF Curve Comparison for Windsor Airport, 2050s 2−year Return Period Event (10th−90th Percentile)
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Figure A−26: IDF Curve Comparison for Windsor Airport, 2050s 5−year Return Period Event (10th−90th Percentile)
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Figure A−27: IDF Curve Comparison for Windsor Airport, 2050s 10−year Return Period Event (10th−90th Percentile)
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Figure A−28: IDF Curve Comparison for Windsor Airport, 2050s 25−year Return Period Event (10th−90th Percentile)
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Figure A−29: IDF Curve Comparison for Windsor Airport, 2050s 50−year Return Period Event (10th−90th Percentile)
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Figure A−30: IDF Curve Comparison for Windsor Airport, 2050s 100−year Return Period Event (10th−90th Percentile)
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Figure A−31: IDF Curve Comparison for Windsor Airport, 2090s 2−year Return Period Event (10th−90th Percentile)
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Figure A−32: IDF Curve Comparison for Windsor Airport, 2090s 5−year Return Period Event (10th−90th Percentile)
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Figure A−33: IDF Curve Comparison for Windsor Airport, 2090s 10−year Return Period Event (10th−90th Percentile)
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Figure A−34: IDF Curve Comparison for Windsor Airport, 2090s 25−year Return Period Event (10th−90th Percentile)
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Figure A−35: IDF Curve Comparison for Windsor Airport, 2090s 50−year Return Period Event (10th−90th Percentile)
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Figure A−36: IDF Curve Comparison for Windsor Airport, 2090s 100−year Return Period Event (10th−90th Percentile)
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Figure A−37: IDF Curve Comparison for Pearson Airport, 2090s 2−year Return Period Event (50th−75th Percentile)
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Figure A−38: IDF Curve Comparison for Pearson Airport, 2090s 5−year Return Period Event (50th−75th Percentile)
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Figure A−39: IDF Curve Comparison for Pearson Airport, 2090s 10−year Return Period Event (50th−75th Percentile)
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Figure A−40: IDF Curve Comparison for Pearson Airport, 2090s 25−year Return Period Event (50th−75th Percentile)
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Figure A−41: IDF Curve Comparison for Pearson Airport, 2090s 50−year Return Period Event (50th−75th Percentile)
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Figure A−42: IDF Curve Comparison for Pearson Airport, 2090s 100−year Return Period Event (50th−75th Percentile)
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Figure A−43: IDF Curve Comparison for Windsor Airport, 2090s 2−year Return Period Event (50th−75th Percentile)
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Figure A−44: IDF Curve Comparison for Windsor Airport, 2090s 5−year Return Period Event (50th−75th Percentile)
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Figure A−45: IDF Curve Comparison for Windsor Airport, 2090s 10−year Return Period Event (50th−75th Percentile)
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Figure A−46: IDF Curve Comparison for Windsor Airport, 2090s 25−year Return Period Event (50th−75th Percentile)
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Figure A−47: IDF Curve Comparison for Windsor Airport, 2090s 50−year Return Period Event (50th−75th Percentile)
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Figure A−48: IDF Curve Comparison for Windsor Airport, 2090s 100−year Return Period Event (50th−75th Percentile)
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---------------------------------------------------------          

 PEARSON AIRPORT 2030S 2-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 60.9 63.26 57.1 72.548 59.1915 66.968 69.63625 72.4594 12 

0.5 40.3 41.959 37.768 48.23 39.2608 44.448 46.318 48.1054 12 

1 23.3 23.823 21.577 27.321 22.2911 25.203 26.0755 27.22 12 

3 NA 9.353 5.829 10.727 5.8735 9.8085 10.17275 10.442 12 

2 13.7 13.742 12.471 15.76 12.8585 14.5385 14.96275 15.736 12 

6 6 5.513 5.269 6.515 5.3253 5.5465 5.83575 6.3573 12 

12 3.5 3.039 2.915 3.832 2.9368 3.251 3.3435 3.7209 12 

24 2 1.827 1.691 2.095 1.7237 1.9135 1.97375 2.0294 12 

Model info for (a) Hist. Gumbel: R=22.05T^-0.733          

 Estimate Std. Error t value Pr(>|t|)      

A 22.046 2.75E-01 80.05 5.76E-09      

B 0.7332 8.97E-03 81.78 5.18E-09      

Model info for (b) Hist. GEV: R=21.78T^-0.769          

 Estimate Std. Error t value Pr(>|t|)      

A 21.783 3.58E-01 60.78 1.33E-09      

B 0.7694 1.18E-02 65.04 8.88E-10      

Model info for (c) Fut. EnsembleMin.: R=19.97T^-0.758          

 Estimate Std. Error t value Pr(>|t|)      

A 19.974 3.43E-01 58.22 1.73E-09      

B 0.7580 1.23E-02 61.41 1.25E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=20.52T^-0.764        

  

 Estimate Std. Error t value Pr(>|t|)      

A 20.525 3.73E-01 55.07 2.41E-09      

B 0.7643 1.31E-02 58.56 1.67E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=25.12T^-0.765        

  

 Estimate Std. Error t value Pr(>|t|)      

A 25.117 3.92E-01 63.99 9.79E-10      

B 0.7646 1.12E-02 68.07 6.76E-10      
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Model info for (f) Fut. EnsembleMax.: R=25.38T^-0.758          

 Estimate Std. Error t value Pr(>|t|)      

A 25.381 3.75E-01 67.60 7.05E-10      

B 0.7579 1.06E-02 71.30 5.12E-10      
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---------------------------------------------------------          

 PEARSON AIRPORT 2030S 5-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 81.7 83.978 71.436 90.895 74.1773 84.875 88.63775 89.8709 12 

0.5 55.2 55.997 47.51 60.656 49.4616 56.591 59.104 59.9728 12 

1 33.1 31.558 26.841 34.23 27.8755 31.897 33.31 33.7987 12 

3 NA 11.944 7.478 12.946 7.7377 11.7465 12.291 12.5145 12 

2 19.9 18.426 15.513 20.204 16.2756 18.622 19.4495 19.8776 12 

6 8.7 7.467 6.886 7.871 7.1598 7.583 7.7355 7.8357 12 

12 4.9 4.035 3.739 4.4 3.8693 4.213 4.2495 4.3767 12 

24 2.8 2.333 2.007 2.563 2.0607 2.3585 2.4685 2.539 12 

Model info for (a) Hist. Gumbel: R=30.29T^-0.716          

 Estimate Std. Error t value Pr(>|t|)      

A 30.286 4.77E-01 63.46 1.84E-08      

B 0.7162 1.13E-02 63.38 1.85E-08      

Model info for (b) Hist. GEV: R=28.96T^-0.768          

 Estimate Std. Error t value Pr(>|t|)      

A 28.956 5.08E-01 56.96 1.97E-09      

B 0.7684 1.26E-02 60.89 1.32E-09      

Model info for (c) Fut. EnsembleMin.: R=25.18T^-0.752          

 Estimate Std. Error t value Pr(>|t|)      

A 25.184 4.69E-01 53.68 2.81E-09      

B 0.7524 1.34E-02 56.21 2.13E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=26.14T^-0.753        

  

 Estimate Std. Error t value Pr(>|t|)      

A 26.137 5.03E-01 51.98 3.40E-09      

B 0.7528 1.38E-02 54.46 2.57E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=30.96T^-0.769        

  

 Estimate Std. Error t value Pr(>|t|)      

A 30.956 5.31E-01 58.27 1.72E-09      

B 0.7692 1.23E-02 62.34 1.15E-09      
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Model info for (f) Fut. EnsembleMax.: R=31.26T^-0.77          

 Estimate Std. Error t value Pr(>|t|)      

A 31.256 5.43E-01 57.55 1.85E-09      

B 0.7704 1.25E-02 61.66 1.22E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2030S 10-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 95.4 96.121 80.781 102.977 82.2086 96.672 101.28525 102.7176 12 

0.5 65.1 64.171 53.831 68.748 54.8831 64.532 67.622 68.5589 12 

1 39.6 36.266 30.366 39.053 31.0168 36.458 38.356 38.8423 12 

3 NA 14.069 8.691 15.002 9.2308 12.903 14.319 14.6688 12 

2 24 21.585 17.708 24.058 18.4604 21.6545 23.09025 23.385 12 

6 10.5 9.037 8.077 10.199 8.5019 9.2045 9.6695 9.7715 12 

12 5.9 4.833 4.346 5.013 4.6057 4.832 4.9165 4.99 12 

24 3.3 2.748 2.256 3.302 2.3498 2.752 2.9575 3.0277 12 

Model info for (a) Hist. Gumbel: R=35.76T^-0.708          

 Estimate Std. Error t value Pr(>|t|)      

A 35.755 6.21E-01 57.61 2.98E-08      

B 0.7083 1.24E-02 56.93 3.16E-08      

Model info for (b) Hist. GEV: R=33.71T^-0.756          

 Estimate Std. Error t value Pr(>|t|)      

A 33.710 5.72E-01 58.93 1.60E-09      

B 0.7562 1.22E-02 62.02 1.18E-09      

Model info for (c) Fut. EnsembleMin.: R=28.76T^-0.745          

 Estimate Std. Error t value Pr(>|t|)      

A 28.755 5.59E-01 51.44 3.62E-09      

B 0.7454 1.40E-02 53.39 2.90E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=29.63T^-0.736        

  

 Estimate Std. Error t value Pr(>|t|)      

A 29.631 5.73E-01 51.70 3.51E-09      

B 0.7364 1.39E-02 53.04 3.02E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=36.03T^-0.756        

  

 Estimate Std. Error t value Pr(>|t|)      

A 36.028 6.53E-01 55.17 2.38E-09      

B 0.7561 1.30E-02 58.06 1.75E-09      
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Model info for (f) Fut. EnsembleMax.: R=36.58T^-0.747          

 Estimate Std. Error t value Pr(>|t|)      

A 36.584 6.83E-01 53.59 2.83E-09      

B 0.7469 1.34E-02 55.72 2.24E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2030S 25-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 112.8 109.876 79.117 119.803 90.5547 110.3445 115.986 117.609 12 

0.5 77.6 73.377 52.836 80.007 60.4327 73.6905 77.4485 78.4169 12 

1 47.7 41.779 30.084 45.554 34.0814 41.9045 44.35475 45.4199 12 

3 NA 17.331 10.377 19.491 11.4802 14.623 16.865 17.8817 12 

2 29.2 25.642 18.464 30.151 20.0706 25.589 27.75625 28.1335 12 

6 12.7 11.401 9.428 15.14 9.5281 12.252 13.07675 13.4666 12 

12 7.1 6.031 5.094 6.566 5.1394 5.79 6.21175 6.2509 12 

24 4 3.385 2.437 4.862 2.5377 3.3495 3.71225 3.8921 12 

Model info for (a) Hist. Gumbel: R=42.63T^-0.702          

 Estimate Std. Error t value Pr(>|t|)      

A 42.630 7.78E-01 54.79 3.83E-08      

B 0.7023 1.31E-02 53.71 4.23E-08      

Model info for (b) Hist. GEV: R=39.8T^-0.733          

 Estimate Std. Error t value Pr(>|t|)      

A 39.800 6.51E-01 61.16 1.28E-09      

B 0.7329 1.17E-02 62.44 1.13E-09      

Model info for (c) Fut. EnsembleMin.: R=29.88T^-0.703          

 Estimate Std. Error t value Pr(>|t|)      

A 29.880 6.41E-01 46.61 6.53E-09      

B 0.7027 1.54E-02 45.72 7.34E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=32.77T^-0.734        

  

 Estimate Std. Error t value Pr(>|t|)      

A 32.771 6.41E-01 51.14 3.75E-09      

B 0.7335 1.40E-02 52.26 3.29E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=43.41T^-0.719        

  

 Estimate Std. Error t value Pr(>|t|)      

A 43.408 9.63E-01 45.06 8.00E-09      

B 0.7193 1.59E-02 45.19 7.86E-09      
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Model info for (f) Fut. EnsembleMax.: R=45.77T^-0.694          

 Estimate Std. Error t value Pr(>|t|)      

A 45.767 1.14E+00 40.25 1.57E-08      

B 0.6945 1.78E-02 39.03 1.89E-08      
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---------------------------------------------------------          

 PEARSON AIRPORT 2030S 50-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 125.7 119.047 75.087 131.887 93.0861 119.5095 127.30225 127.9543 12 

0.5 86.8 79.481 50.131 88.053 62.1309 79.799 84.95075 85.2788 12 

1 53.8 45.578 28.748 50.494 35.0812 45.668 48.859 50.1025 12 

3 NA 20.252 11.747 24.166 12.8242 17.5155 18.869 21.1451 12 

2 33.1 28.7 18.102 35.383 20.7767 28.546 31.21925 32.2172 12 

6 14.4 13.478 10.091 20.852 10.2833 15.2365 16.435 17.6938 12 

12 8 7.082 5.321 8.289 5.4622 6.646 7.3255 7.5343 12 

24 4.5 3.956 2.495 6.709 2.6385 3.875 4.403 4.7693 12 

Model info for (a) Hist. Gumbel: R=47.76T^-0.698          

 Estimate Std. Error t value Pr(>|t|)      

A 47.761 9.08E-01 52.58 4.70E-08      

B 0.6985 1.36E-02 51.28 5.33E-08      

Model info for (b) Hist. GEV: R=44.42T^-0.711          

 Estimate Std. Error t value Pr(>|t|)      

A 44.418 7.39E-01 60.09 1.43E-09      

B 0.7115 1.19E-02 59.63 1.49E-09      

Model info for (c) Fut. EnsembleMin.: R=29.46T^-0.675          

 Estimate Std. Error t value Pr(>|t|)      

A 29.459 7.27E-01 40.54 1.51E-08      

B 0.6753 1.76E-02 38.29 2.12E-08      

Model info for (d) Fut. Ensemble10thPercentile: R=34.15T^-0.724        

  

 Estimate Std. Error t value Pr(>|t|)      

A 34.154 7.09E-01 48.14 5.39E-09      

B 0.7236 1.49E-02 48.55 5.12E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=49.83T^-0.681        

  

 Estimate Std. Error t value Pr(>|t|)      

A 49.833 1.48E+00 33.59 4.64E-08      

B 0.6806 2.13E-02 31.95 6.25E-08      
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Model info for (f) Fut. EnsembleMax.: R=54.11T^-0.643          

 Estimate Std. Error t value Pr(>|t|)      

A 54.115 1.77E+00 30.66 8.00E-08      

B 0.6429 2.33E-02 27.65 1.48E-07      
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---------------------------------------------------------          

 PEARSON AIRPORT 2030S 100-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 138.6 127.364 70.24 143.593 95.1162 128.125 137.645 138.3842 12 

0.5 96 84.99 46.871 95.819 63.4852 85.517 91.58275 92.2345 12 

1 59.8 49.12 27.089 55.379 35.9051 49.2905 53.4575 54.6659 12 

3 NA 23.656 13.046 30.372 13.259 20.9435 21.211 25.1686 12 

2 36.9 31.778 17.525 41.265 21.3852 31.584 34.82125 36.5803 12 

6 16.1 15.861 10.729 29.145 11.019 19.0065 20.762 23.6999 12 

12 8.9 8.286 5.516 10.572 5.7515 7.586 8.62775 9.1292 12 

24 5 4.62 2.548 9.447 2.7347 4.4895 5.2305 5.8782 12 

Model info for (a) Hist. Gumbel: R=52.89T^-0.695          

 Estimate Std. Error t value Pr(>|t|)      

A 52.886 1.04E+00 51.08 5.44E-08      

B 0.6954 1.40E-02 49.60 6.29E-08      

Model info for (b) Hist. GEV: R=49.11T^-0.688          

 Estimate Std. Error t value Pr(>|t|)      

A 49.112 8.74E-01 56.18 2.14E-09      

B 0.6877 1.27E-02 53.98 2.72E-09      

Model info for (c) Fut. EnsembleMin.: R=28.71T^-0.646          

 Estimate Std. Error t value Pr(>|t|)      

A 28.708 8.32E-01 34.49 3.95E-08      

B 0.6458 2.07E-02 31.24 7.15E-08      

Model info for (d) Fut. Ensemble10thPercentile: R=35.35T^-0.714        

  

 Estimate Std. Error t value Pr(>|t|)      

A 35.354 7.99E-01 44.23 8.94E-09      

B 0.7142 1.62E-02 44.06 9.15E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=57.27T^-0.637        

  

 Estimate Std. Error t value Pr(>|t|)      

A 57.272 2.32E+00 24.67 2.92E-07      

B 0.6368 2.89E-02 22.05 5.68E-07      
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Model info for (f) Fut. EnsembleMax.: R=63.91T^-0.584          

 Estimate Std. Error t value Pr(>|t|)      

A 63.910 2.69E+00 23.77 3.64E-07      

B 0.5843 2.98E-02 19.64 1.13E-06      
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---------------------------------------------------------          

 PEARSON AIRPORT 2050S 2-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 60.9 68.348 67.052 86.748 67.4223 75.897 77.6795 83.15 8 

0.5 40.3 45.412 44.55 57.687 44.7593 50.407 51.6015 55.2615 8 

1 23.3 25.425 24.943 32.367 24.9745 28.539 29.1595 30.9607 8 

3 NA 9.66 9.406 11.581 9.4557 10.9025 11.208 11.3787 8 

2 13.7 14.337 13.951 18.633 14.0308 16.4935 16.72225 17.5732 8 

6 6 5.773 5.572 6.9 5.5804 6.4535 6.7395 6.8013 8 

12 3.5 3.149 2.883 3.816 2.8935 3.55 3.7315 3.7579 8 

24 2 1.887 1.837 2.237 1.8468 2.114 2.18925 2.2146 8 

Model info for (a) Hist. Gumbel: R=22.05T^-0.733          

 Estimate Std. Error t value Pr(>|t|)      

A 22.046 2.75E-01 80.05 5.76E-09      

B 0.7332 8.97E-03 81.78 5.18E-09      

Model info for (b) Hist. GEV: R=23.22T^-0.779          

 Estimate Std. Error t value Pr(>|t|)      

A 23.218 4.14E-01 56.12 2.15E-09      

B 0.7792 1.28E-02 60.79 1.33E-09      

Model info for (c) Fut. EnsembleMin.: R=22.53T^-0.787          

 Estimate Std. Error t value Pr(>|t|)      

A 22.535 4.52E-01 49.85 4.37E-09      

B 0.7869 1.44E-02 54.53 2.55E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=22.64T^-0.788        

  

 Estimate Std. Error t value Pr(>|t|)      

A 22.635 4.51E-01 50.15 4.22E-09      

B 0.7877 1.43E-02 54.91 2.45E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=27.97T^-0.786        

  

 Estimate Std. Error t value Pr(>|t|)      

A 27.973 5.32E-01 52.62 3.16E-09      

B 0.7862 1.37E-02 57.50 1.86E-09      



 
16

Model info for (f) Fut. EnsembleMax.: R=28.91T^-0.793          

 Estimate Std. Error t value Pr(>|t|)      

A 28.912 5.95E-01 48.60 5.09E-09      

B 0.7930 1.48E-02 53.56 2.84E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2050S 5-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 81.7 89.045 86.554 104.818 86.792 89.266 94.2195 103.7484 8 

0.5 55.2 59.234 57.578 69.727 57.7096 59.5475 62.828 69.1355 8 

1 33.1 33.288 32.357 39.184 32.3759 33.5595 35.4895 39.1567 8 

3 NA 12.588 12.231 14.262 12.2345 12.7125 13.11425 13.7594 8 

2 19.9 19.301 18.681 23.621 18.737 19.653 20.6875 22.9903 8 

6 8.7 8.047 6.859 8.879 6.8604 8.555 8.7455 8.8559 8 

12 4.9 4.357 4.005 4.786 4.0092 4.585 4.641 4.779 8 

24 2.8 2.459 2.389 2.911 2.3897 2.483 2.58525 2.7927 8 

Model info for (a) Hist. Gumbel: R=30.29T^-0.716          

 Estimate Std. Error t value Pr(>|t|)      

A 30.286 4.77E-01 63.46 1.84E-08      

B 0.7162 1.13E-02 63.38 1.85E-08      

Model info for (b) Hist. GEV: R=30.83T^-0.765          

 Estimate Std. Error t value Pr(>|t|)      

A 30.829 5.23E-01 58.99 1.59E-09      

B 0.7655 1.22E-02 62.82 1.09E-09      

Model info for (c) Fut. EnsembleMin.: R=29.11T^-0.786          

 Estimate Std. Error t value Pr(>|t|)      

A 29.114 5.64E-01 51.63 3.54E-09      

B 0.7863 1.39E-02 56.43 2.08E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=29.17T^-0.787        

  

 Estimate Std. Error t value Pr(>|t|)      

A 29.169 5.65E-01 51.60 3.55E-09      

B 0.7869 1.39E-02 56.44 2.08E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=35.29T^-0.778        

  

 Estimate Std. Error t value Pr(>|t|)      

A 35.287 6.79E-01 51.96 3.41E-09      

B 0.7783 1.38E-02 56.23 2.13E-09      
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Model info for (f) Fut. EnsembleMax.: R=35.63T^-0.779          

 Estimate Std. Error t value Pr(>|t|)      

A 35.634 6.73E-01 52.92 3.06E-09      

B 0.7786 1.36E-02 57.29 1.90E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2050S 10-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 95.4 100.668 91.542 115.42 92.9861 96.9715 100.958 112.3694 8 

0.5 65.1 67.113 61.114 76.947 62.0772 64.6985 67.35025 75.0388 8 

1 39.6 38.089 34.538 43.67 35.0357 36.6465 38.346 42.9294 8 

3 NA 15.23 13.398 16.113 13.4526 14.417 15.20425 15.8764 8 

2 24 22.873 20.556 26.652 20.7471 21.9045 23.23625 26.3531 8 

6 10.5 9.89 7.494 11.388 7.5136 9.8855 10.36975 11.1115 8 

12 5.9 5.341 4.98 6.012 5.0157 5.204 5.393 5.9546 8 

24 3.3 2.975 2.617 3.416 2.6275 2.816 3.00825 3.2907 8 

Model info for (a) Hist. Gumbel: R=35.76T^-0.708          

 Estimate Std. Error t value Pr(>|t|)      

A 35.755 6.21E-01 57.61 2.98E-08      

B 0.7083 1.24E-02 56.93 3.16E-08      

Model info for (b) Hist. GEV: R=35.87T^-0.745          

 Estimate Std. Error t value Pr(>|t|)      

A 35.869 5.71E-01 62.83 1.09E-09      

B 0.7447 1.14E-02 65.15 8.79E-10      

Model info for (c) Fut. EnsembleMin.: R=31.65T^-0.766          

 Estimate Std. Error t value Pr(>|t|)      

A 31.648 5.92E-01 53.48 2.87E-09      

B 0.7665 1.34E-02 57.02 1.95E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=32.02T^-0.769        

  

 Estimate Std. Error t value Pr(>|t|)      

A 32.019 6.17E-01 51.90 3.43E-09      

B 0.7694 1.39E-02 55.54 2.29E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=40.07T^-0.744        

  

 Estimate Std. Error t value Pr(>|t|)      

A 40.067 6.84E-01 58.56 1.67E-09      

B 0.7442 1.23E-02 60.68 1.35E-09      
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Model info for (f) Fut. EnsembleMax.: R=41.06T^-0.746          

 Estimate Std. Error t value Pr(>|t|)      

A 41.062 6.95E-01 59.08 1.58E-09      

B 0.7459 1.22E-02 61.35 1.26E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2050S 25-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 112.8 113.345 90.269 123.839 95.736 105.9015 111.878 119.9687 8 

0.5 77.6 75.818 60.284 82.837 63.9345 70.8165 74.8675 80.3359 8 

1 47.7 43.729 34.324 47.777 36.2931 40.6285 43.27475 46.5989 8 

3 NA 19.66 14.239 20.082 14.4287 17.0855 19.12525 19.606 8 

2 29.2 27.74 21.066 30.308 21.8451 25.222 28.01725 30.2317 8 

6 12.7 12.693 8.098 15.692 8.1498 11.7515 12.836 14.7596 8 

12 7.1 6.843 6.035 8.054 6.0511 6.319 6.991 7.8685 8 

24 4 3.84 2.781 4.131 2.8181 3.385 3.934 4.0183 8 

Model info for (a) Hist. Gumbel: R=42.63T^-0.702          

 Estimate Std. Error t value Pr(>|t|)      

A 42.630 7.78E-01 54.79 3.83E-08      

B 0.7023 1.31E-02 53.71 4.23E-08      

Model info for (b) Hist. GEV: R=42.35T^-0.711          

 Estimate Std. Error t value Pr(>|t|)      

A 42.345 6.44E-01 65.76 8.32E-10      

B 0.7105 1.09E-02 65.18 8.77E-10      

Model info for (c) Fut. EnsembleMin.: R=32.69T^-0.733          

 Estimate Std. Error t value Pr(>|t|)      

A 32.694 6.60E-01 49.52 4.55E-09      

B 0.7328 1.45E-02 50.56 4.02E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=34.03T^-0.746        

  

 Estimate Std. Error t value Pr(>|t|)      

A 34.025 7.21E-01 47.21 6.05E-09      

B 0.7465 1.52E-02 49.07 4.80E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=45.98T^-0.692        

  

 Estimate Std. Error t value Pr(>|t|)      

A 45.977 9.01E-01 51.03 3.80E-09      

B 0.6922 1.40E-02 49.33 4.65E-09      
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Model info for (f) Fut. EnsembleMax.: R=47.63T^-0.69          

 Estimate Std. Error t value Pr(>|t|)      

A 47.634 1.05E+00 45.55 7.50E-09      

B 0.6895 1.57E-02 43.87 9.39E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2050S 50-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 125.7 121.488 86.98 126.943 94.0948 111.341 118.78425 123.6894 8 

0.5 86.8 81.482 58.071 85.141 62.8219 74.5825 79.6815 82.9941 8 

1 53.8 47.626 33.301 49.764 36.0247 43.251 46.61925 48.6384 8 

3 NA 23.973 14.797 25.416 15.0518 18.587 22.9285 23.8711 8 

2 33.1 31.624 20.969 33.044 22.3424 27.7225 31.772 32.7605 8 

6 14.4 15.177 8.424 19.964 8.5059 13.2845 15.0345 18.1881 8 

12 8 8.181 6.705 10.025 6.7197 7.414 8.64675 9.6771 8 

24 4.5 4.682 2.89 4.964 2.9397 3.9035 4.6335 4.7946 8 

Model info for (a) Hist. Gumbel: R=47.76T^-0.698          

 Estimate Std. Error t value Pr(>|t|)      

A 47.761 9.08E-01 52.58 4.70E-08      

B 0.6985 1.36E-02 51.28 5.33E-08      

Model info for (b) Hist. GEV: R=47.28T^-0.681          

 Estimate Std. Error t value Pr(>|t|)      

A 47.279 7.33E-01 64.53 9.31E-10      

B 0.6811 1.11E-02 61.43 1.25E-09      

Model info for (c) Fut. EnsembleMin.: R=32.68T^-0.706          

 Estimate Std. Error t value Pr(>|t|)      

A 32.685 7.43E-01 43.98 9.25E-09      

B 0.7062 1.63E-02 43.34 1.01E-08      

Model info for (d) Fut. Ensemble10thPercentile: R=34.47T^-0.725        

  

 Estimate Std. Error t value Pr(>|t|)      

A 34.474 8.00E-01 43.11 1.04E-08      

B 0.7245 1.66E-02 43.53 9.83E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=50.42T^-0.648        

  

 Estimate Std. Error t value Pr(>|t|)      

A 50.416 1.19E+00 42.20 1.18E-08      

B 0.6477 1.69E-02 38.32 2.11E-08      
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Model info for (f) Fut. EnsembleMax.: R=52.45T^-0.638          

 Estimate Std. Error t value Pr(>|t|)      

A 52.452 1.50E+00 35.03 3.60E-08      

B 0.6379 2.03E-02 31.37 6.98E-08      
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---------------------------------------------------------          

 PEARSON AIRPORT 2050S 100-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 138.6 128.644 82.45 127.793 91.0418 115.9165 124.79675 126.0962 8 

0.5 96 86.515 55.019 85.942 60.752 77.7815 83.91525 84.7674 8 

1 59.8 51.269 31.798 50.93 35.1118 45.6135 49.707 50.1726 8 

3 NA 29.376 15.314 32.559 15.6003 20.0955 27.38525 29.6855 8 

2 36.9 35.727 20.572 36.062 22.6328 30.258 35.05725 35.6616 8 

6 16.1 18.047 8.658 25.4 8.7749 14.9465 17.571 22.3536 8 

12 8.9 9.731 7.41 12.473 7.4128 8.709 10.6815 11.8836 8 

24 5 5.737 2.991 6.359 3.047 4.405 5.41375 5.7976 8 

Model info for (a) Hist. Gumbel: R=52.89T^-0.695          

 Estimate Std. Error t value Pr(>|t|)      

A 52.886 1.04E+00 51.08 5.44E-08      

B 0.6954 1.40E-02 49.60 6.29E-08      

Model info for (b) Hist. GEV: R=52.32T^-0.649          

 Estimate Std. Error t value Pr(>|t|)      

A 52.321 8.64E-01 60.55 1.36E-09      

B 0.6493 1.18E-02 55.11 2.40E-09      

Model info for (c) Fut. EnsembleMin.: R=32.27T^-0.677          

 Estimate Std. Error t value Pr(>|t|)      

A 32.265 8.66E-01 37.27 2.49E-08      

B 0.6769 1.92E-02 35.27 3.46E-08      

Model info for (d) Fut. Ensemble10thPercentile: R=34.49T^-0.7        

  

 Estimate Std. Error t value Pr(>|t|)      

A 34.491 9.13E-01 37.76 2.30E-08      

B 0.7003 1.90E-02 36.91 2.64E-08      

Model info for (e) Fut. Ensemble90thPercentile: R=54.9T^-0.6        

  

 Estimate Std. Error t value Pr(>|t|)      

A 54.903 1.58E+00 34.84 3.72E-08      

B 0.6002 2.03E-02 29.50 1.01E-07      
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Model info for (f) Fut. EnsembleMax.: R=57.29T^-0.579          

 Estimate Std. Error t value Pr(>|t|)      

A 57.286 2.00E+00 28.69 1.19E-07      

B 0.5793 2.46E-02 23.52 3.87E-07      
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---------------------------------------------------------          

 PEARSON AIRPORT 2090S 2-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 60.9 63.26 72.97 104.028 73.6188 84.344 88.085 91.8923 12 

0.5 40.3 41.959 48.4 69.527 48.8534 56.0945 58.807 60.9868 12 

1 23.3 23.823 27.48 39.209 27.706 31.2065 32.56175 34.6016 12 

3 NA 9.353 6.899 13.788 7.1504 11.3865 12.5755 13.531 12 

2 13.7 13.742 15.852 23.303 15.8707 18.091 18.869 19.9937 12 

6 6 5.513 6.257 8.938 6.5444 6.9655 7.26425 7.8974 12 

12 3.5 3.039 3.45 4.471 3.5756 3.88 4.0695 4.1697 12 

24 2 1.827 2.107 2.662 2.1134 2.377 2.46675 2.4783 12 

Model info for (a) Hist. Gumbel: R=22.05T^-0.733          

 Estimate Std. Error t value Pr(>|t|)      

A 22.046 2.75E-01 80.05 5.76E-09      

B 0.7332 8.97E-03 81.78 5.18E-09      

Model info for (b) Hist. GEV: R=21.78T^-0.769          

 Estimate Std. Error t value Pr(>|t|)      

A 21.783 3.58E-01 60.78 1.33E-09      

B 0.7694 1.18E-02 65.04 8.88E-10      

Model info for (c) Fut. EnsembleMin.: R=24.94T^-0.775          

 Estimate Std. Error t value Pr(>|t|)      

A 24.940 4.92E-01 50.74 3.93E-09      

B 0.7747 1.42E-02 54.66 2.52E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=25.39T^-0.768        

  

 Estimate Std. Error t value Pr(>|t|)      

A 25.388 4.80E-01 52.94 3.05E-09      

B 0.7683 1.36E-02 56.57 2.05E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=31.25T^-0.778        

  

 Estimate Std. Error t value Pr(>|t|)      

A 31.255 5.90E-01 52.95 3.05E-09      

B 0.7783 1.36E-02 57.30 1.90E-09      
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Model info for (f) Fut. EnsembleMax.: R=35.08T^-0.784          

 Estimate Std. Error t value Pr(>|t|)      

A 35.083 7.88E-01 44.52 8.60E-09      

B 0.7845 1.62E-02 48.55 5.12E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2090S 5-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 81.7 83.978 96.203 124.688 97.9114 108.6535 112.35625 114.1324 12 

0.5 55.2 55.997 64.149 83.27 65.3772 72.451 74.92025 76.166 12 

1 33.1 31.558 36.153 47.798 36.9634 40.8315 42.34725 42.4389 12 

3 NA 11.944 9.069 16.728 9.8106 14.8245 15.111 15.6267 12 

2 19.9 18.426 21.108 30.317 22.0957 23.3415 24.6525 24.7248 12 

6 8.7 7.467 8.392 11.288 8.8808 9.2645 10.02975 10.1616 12 

12 4.9 4.035 4.535 5.71 4.9057 5.143 5.31025 5.5825 12 

24 2.8 2.333 2.67 3.13 2.6905 2.9595 3.11275 3.127 12 

Model info for (a) Hist. Gumbel: R=30.29T^-0.716          

 Estimate Std. Error t value Pr(>|t|)      

A 30.286 4.77E-01 63.46 1.84E-08      

B 0.7162 1.13E-02 63.38 1.85E-08      

Model info for (b) Hist. GEV: R=28.96T^-0.768          

 Estimate Std. Error t value Pr(>|t|)      

A 28.956 5.08E-01 56.96 1.97E-09      

B 0.7684 1.26E-02 60.89 1.32E-09      

Model info for (c) Fut. EnsembleMin.: R=32.91T^-0.774          

 Estimate Std. Error t value Pr(>|t|)      

A 32.906 6.78E-01 48.56 5.11E-09      

B 0.7742 1.48E-02 52.29 3.28E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=33.96T^-0.764        

  

 Estimate Std. Error t value Pr(>|t|)      

A 33.959 6.66E-01 50.98 3.82E-09      

B 0.7642 1.41E-02 54.20 2.65E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=39.38T^-0.768        

  

 Estimate Std. Error t value Pr(>|t|)      

A 39.383 6.79E-01 58.02 1.76E-09      

B 0.7679 1.24E-02 61.98 1.19E-09      
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Model info for (f) Fut. EnsembleMax.: R=42.76T^-0.772          

 Estimate Std. Error t value Pr(>|t|)      

A 42.757 9.79E-01 43.68 9.64E-09      

B 0.7725 1.65E-02 46.92 6.28E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2090S 10-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 95.4 96.121 106.278 139.475 107.7853 119.9855 130.59425 135.8939 12 

0.5 65.1 64.171 70.993 93.115 71.9816 80.103 87.06475 90.4696 12 

1 39.6 36.266 40.26 52.634 40.8861 45.2695 50.741 52.5269 12 

3 NA 14.069 10.685 18.174 11.9838 16.2985 17.332 18.1573 12 

2 24 21.585 24.385 34.322 24.8809 27.099 28.94225 31.3169 12 

6 10.5 9.037 9.801 13.729 10.0302 11.382 11.776 12.4174 12 

12 5.9 4.833 5.342 6.714 5.7295 6.116 6.35325 6.5112 12 

24 3.3 2.748 3.156 3.987 3.1574 3.4155 3.5625 3.9315 12 

Model info for (a) Hist. Gumbel: R=35.76T^-0.708          

 Estimate Std. Error t value Pr(>|t|)      

A 35.755 6.21E-01 57.61 2.98E-08      

B 0.7083 1.24E-02 56.93 3.16E-08      

Model info for (b) Hist. GEV: R=33.71T^-0.756          

 Estimate Std. Error t value Pr(>|t|)      

A 33.710 5.72E-01 58.93 1.60E-09      

B 0.7562 1.22E-02 62.02 1.18E-09      

Model info for (c) Fut. EnsembleMin.: R=37.15T^-0.759          

 Estimate Std. Error t value Pr(>|t|)      

A 37.151 6.99E-01 53.14 2.98E-09      

B 0.7585 1.35E-02 56.09 2.16E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=37.97T^-0.753        

  

 Estimate Std. Error t value Pr(>|t|)      

A 37.970 6.52E-01 58.23 1.72E-09      

B 0.7529 1.23E-02 61.02 1.30E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=47.21T^-0.763        

  

 Estimate Std. Error t value Pr(>|t|)      

A 47.214 8.76E-01 53.90 2.74E-09      

B 0.7630 1.33E-02 57.21 1.92E-09      
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Model info for (f) Fut. EnsembleMax.: R=49.11T^-0.753          

 Estimate Std. Error t value Pr(>|t|)      

A 49.113 1.05E+00 46.92 6.28E-09      

B 0.7533 1.53E-02 49.19 4.73E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2090S 25-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 112.8 109.876 108.202 185.078 109.3135 133.471 150.4405 168.2068 12 

0.5 77.6 73.377 72.26 123.599 73.0064 89.1345 100.35225 111.3765 12 

1 47.7 41.779 41.143 70.409 41.54 50.855 57.90625 69.4051 12 

3 NA 17.331 13.003 23.235 15.1071 17.707 19.487 22.8503 12 

2 29.2 25.642 25.25 43.192 25.4642 32.68 35.917 42.6583 12 

6 12.7 11.401 10.521 17.105 11.0299 14.4385 15.844 16.0873 12 

12 7.1 6.031 6.501 8.509 6.7322 7.3535 8.12175 8.445 12 

24 4 3.385 3.333 5.702 3.3911 4.0725 4.55175 5.5413 12 

Model info for (a) Hist. Gumbel: R=42.63T^-0.702          

 Estimate Std. Error t value Pr(>|t|)      

A 42.630 7.78E-01 54.79 3.83E-08      

B 0.7023 1.31E-02 53.71 4.23E-08      

Model info for (b) Hist. GEV: R=39.8T^-0.733          

 Estimate Std. Error t value Pr(>|t|)      

A 39.800 6.51E-01 61.16 1.28E-09      

B 0.7329 1.17E-02 62.44 1.13E-09      

Model info for (c) Fut. EnsembleMin.: R=39.1T^-0.735          

 Estimate Std. Error t value Pr(>|t|)      

A 39.096 6.02E-01 64.98 8.93E-10      

B 0.7346 1.10E-02 66.50 7.78E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=39.91T^-0.727        

  

 Estimate Std. Error t value Pr(>|t|)      

A 39.912 5.76E-01 69.30 6.07E-10      

B 0.7271 1.04E-02 70.22 5.61E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=59.82T^-0.746        

  

 Estimate Std. Error t value Pr(>|t|)      

A 59.820 1.14E+00 52.54 3.19E-09      

B 0.7461 1.37E-02 54.58 2.54E-09      
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Model info for (f) Fut. EnsembleMax.: R=64.35T^-0.762          

 Estimate Std. Error t value Pr(>|t|)      

A 64.354 1.30E+00 49.46 4.58E-09      

B 0.7624 1.45E-02 52.46 3.22E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2090S 50-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 125.7 119.047 102.288 230.68 110.5183 143.1725 168.6385 197.3539 12 

0.5 86.8 79.481 68.292 154.011 73.8 95.423 112.02925 130.0738 12 

1 53.8 45.578 39.162 88.381 42.066 54.96 65.945 86.3261 12 

3 NA 20.252 14.968 27.887 17.407 20.633 21.5225 27.2399 12 

2 33.1 28.7 24.66 55.613 25.95 36.9255 41.16725 54.047 12 

6 14.4 13.478 10.557 20.749 11.9137 16.969 19.24425 19.8705 12 

12 8 7.082 7.479 10.883 7.5036 8.4165 9.76375 10.4269 12 

24 4.5 3.956 3.399 7.665 3.5179 4.703 5.53425 7.3557 12 

Model info for (a) Hist. Gumbel: R=47.76T^-0.698          

 Estimate Std. Error t value Pr(>|t|)      

A 47.761 9.08E-01 52.58 4.70E-08      

B 0.6985 1.36E-02 51.28 5.33E-08      

Model info for (b) Hist. GEV: R=44.42T^-0.711          

 Estimate Std. Error t value Pr(>|t|)      

A 44.418 7.39E-01 60.09 1.43E-09      

B 0.7115 1.19E-02 59.63 1.49E-09      

Model info for (c) Fut. EnsembleMin.: R=38.5T^-0.705          

 Estimate Std. Error t value Pr(>|t|)      

A 38.498 6.71E-01 57.38 1.88E-09      

B 0.7051 1.25E-02 56.45 2.08E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=41.4T^-0.709        

  

 Estimate Std. Error t value Pr(>|t|)      

A 41.397 6.33E-01 65.40 8.60E-10      

B 0.7086 1.10E-02 64.65 9.21E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=71.92T^-0.729        

  

 Estimate Std. Error t value Pr(>|t|)      

A 71.919 1.46E+00 49.21 4.72E-09      

B 0.7285 1.46E-02 49.96 4.31E-09      
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Model info for (f) Fut. EnsembleMax.: R=80.44T^-0.76          

 Estimate Std. Error t value Pr(>|t|)      

A 80.445 1.60E+00 50.39 4.10E-09      

B 0.7602 1.43E-02 53.31 2.93E-09      
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---------------------------------------------------------          

 PEARSON AIRPORT 2090S 100-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 138.6 127.364 95.156 289.39 111.2707 149.066 185.25125 231.4334 12 

0.5 96 84.99 63.497 193.109 74.2936 99.238 122.81275 151.6399 12 

1 59.8 49.12 36.698 111.714 42.4043 58.9805 74.24075 108.0647 12 

3 NA 23.656 17.166 33.419 17.7092 22.767 26.83175 32.8193 12 

2 36.9 31.778 23.742 72.204 26.2905 41.549 47.3885 69.4514 12 

6 16.1 15.861 10.574 26.857 12.7921 19.7445 22.7245 25.0534 12 

12 8.9 8.286 8.273 13.999 8.4127 9.434 11.65775 13.1447 12 

24 5 4.62 3.452 10.498 3.6232 5.4785 6.72575 9.9362 12 

Model info for (a) Hist. Gumbel: R=52.89T^-0.695          

 Estimate Std. Error t value Pr(>|t|)      

A 52.886 1.04E+00 51.08 5.44E-08      

B 0.6954 1.40E-02 49.60 6.29E-08      

Model info for (b) Hist. GEV: R=49.11T^-0.688          

 Estimate Std. Error t value Pr(>|t|)      

A 49.112 8.74E-01 56.18 2.14E-09      

B 0.6877 1.27E-02 53.98 2.72E-09      

Model info for (c) Fut. EnsembleMin.: R=37.36T^-0.675          

 Estimate Std. Error t value Pr(>|t|)      

A 37.362 8.25E-01 45.27 7.78E-09      

B 0.6745 1.58E-02 42.70 1.10E-08      

Model info for (d) Fut. Ensemble10thPercentile: R=42.78T^-0.69        

  

 Estimate Std. Error t value Pr(>|t|)      

A 42.775 7.87E-01 54.34 2.61E-09      

B 0.6898 1.32E-02 52.36 3.26E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=87.1T^-0.705        

  

 Estimate Std. Error t value Pr(>|t|)      

A 87.096 1.93E+00 45.06 8.00E-09      

B 0.7053 1.59E-02 44.35 8.80E-09      
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Model info for (f) Fut. EnsembleMax.: R=102.36T^-0.75          

 Estimate Std. Error t value Pr(>|t|)      

A 102.355 2.11E+00 48.55 5.12E-09      

B 0.7500 1.48E-02 50.69 3.96E-09      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2030S 2-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 68 66.848 60.821 81.735 60.9707 65.716 68.68025 79.7774 12 

0.5 44.4 43.748 39.467 54.073 39.8191 43.1025 44.9945 52.2287 12 

1 27.5 26.233 23.547 32.745 23.8644 25.8255 26.99075 31.3229 12 

3 NA 11.121 9.966 13.812 10.0497 11.1835 12.028 13.2031 12 

2 16.4 15.791 14.2 19.489 14.3616 15.615 16.25425 18.8572 12 

6 6.8 6.188 5.456 8.346 5.6576 6.501 6.876 7.9221 12 

12 3.9 3.434 3.178 4.9 3.1958 3.5155 3.7845 4.7031 12 

24 2.2 2.172 1.946 2.698 1.9625 2.1085 2.1985 2.5645 12 

Model info for (a) Hist. Gumbel: R=24.69T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 24.693 3.48E-01 71.03 1.05E-08      

B 0.7310 1.01E-02 72.35 9.55E-09      

Model info for (b) Hist. GEV: R=23.65T^-0.75          

 Estimate Std. Error t value Pr(>|t|)      

A 23.652 3.39E-01 69.84 5.80E-10      

B 0.7498 1.03E-02 72.89 4.49E-10      

Model info for (c) Fut. EnsembleMin.: R=21.41T^-0.754          

 Estimate Std. Error t value Pr(>|t|)      

A 21.406 2.77E-01 77.29 3.16E-10      

B 0.7535 9.30E-03 81.06 2.37E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=21.61T^-0.748        

  

 Estimate Std. Error t value Pr(>|t|)      

A 21.611 2.89E-01 74.66 3.89E-10      

B 0.7484 9.62E-03 77.79 3.04E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=29T^-0.73          

 Estimate Std. Error t value Pr(>|t|)      

A 28.997 3.37E-01 86.15 1.65E-10      

B 0.7303 8.33E-03 87.66 1.48E-10      

Model info for (f) Fut. EnsembleMax.: R=29.98T^-0.724          
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 Estimate Std. Error t value Pr(>|t|)      

A 29.984 3.72E-01 80.55 2.47E-10      

B 0.7237 8.91E-03 81.25 2.34E-10      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2030S 5-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 87.9 88.129 75.294 105.986 77.0385 86.3575 88.819 102.4942 12 

0.5 58.7 58.08 49.576 68.981 50.7733 56.881 58.48175 67.5263 12 

1 36.9 35.31 29.911 42.312 30.8485 34.5805 35.56375 41.0566 12 

3 NA 14.351 12.264 16.441 12.3895 14.121 14.92575 15.8439 12 

2 21.5 20.773 17.876 24.499 18.1737 20.316 20.89675 23.8576 12 

6 8.8 7.972 7.424 10.438 7.5301 8.16 8.6535 10.047 12 

12 5 4.515 3.74 6.423 3.8889 4.5595 4.77025 5.9464 12 

24 2.8 2.803 2.395 3.211 2.4201 2.7155 2.7905 3.0785 12 

Model info for (a) Hist. Gumbel: R=31.92T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 31.923 5.73E-01 55.68 3.53E-08      

B 0.7310 1.29E-02 56.72 3.22E-08      

Model info for (b) Hist. GEV: R=31.03T^-0.753          

 Estimate Std. Error t value Pr(>|t|)      

A 31.028 4.93E-01 62.99 1.08E-09      

B 0.7533 1.14E-02 66.04 8.10E-10      

Model info for (c) Fut. EnsembleMin.: R=26.81T^-0.745          

 Estimate Std. Error t value Pr(>|t|)      

A 26.815 4.72E-01 56.77 2.01E-09      

B 0.7451 1.27E-02 58.90 1.61E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=27.42T^-0.745        

  

 Estimate Std. Error t value Pr(>|t|)      

A 27.422 4.67E-01 58.78 1.63E-09      

B 0.7455 1.22E-02 61.00 1.30E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=36.96T^-0.736        

  

 Estimate Std. Error t value Pr(>|t|)      

A 36.962 5.34E-01 69.26 6.09E-10      

B 0.7360 1.04E-02 71.01 5.25E-10      
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Model info for (f) Fut. EnsembleMax.: R=38.45T^-0.732          

 Estimate Std. Error t value Pr(>|t|)      

A 38.449 5.16E-01 74.50 3.94E-10      

B 0.7317 9.63E-03 75.95 3.51E-10      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2030S 10-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 101.1 104.403 87.305 123.326 90.0976 102.607 107.723 119.1614 12 

0.5 68.2 67.996 57.329 78.464 59.1374 66.7745 69.57125 77.5433 12 

1 43.1 41.682 34.852 48.502 36.0651 40.933 42.73725 47.5449 12 

3 NA 16.609 13.495 17.761 14.0476 16.06 17.37375 17.4417 12 

2 24.8 23.856 20.44 27.501 20.76 23.428 24.18825 26.5536 12 

6 10.1 9.22 8.845 11.73 8.9496 9.4125 9.97625 11.3771 12 

12 5.8 5.371 4.101 7.275 4.3997 5.368 5.59575 6.6921 12 

24 3.2 3.244 2.636 3.469 2.7442 3.1585 3.28875 3.3915 12 

Model info for (a) Hist. Gumbel: R=36.75T^-0.73          

 Estimate Std. Error t value Pr(>|t|)      

A 36.753 7.12E-01 51.64 5.15E-08      

B 0.7303 1.39E-02 52.56 4.72E-08      

Model info for (b) Hist. GEV: R=36.53T^-0.758          

 Estimate Std. Error t value Pr(>|t|)      

A 36.534 5.41E-01 67.47 7.13E-10      

B 0.7577 1.07E-02 71.14 5.19E-10      

Model info for (c) Fut. EnsembleMin.: R=30.96T^-0.748          

 Estimate Std. Error t value Pr(>|t|)      

A 30.960 6.76E-01 45.80 7.26E-09      

B 0.7482 1.57E-02 47.71 5.69E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=31.97T^-0.748        

  

 Estimate Std. Error t value Pr(>|t|)      

A 31.973 6.06E-01 52.73 3.12E-09      

B 0.7477 1.36E-02 54.89 2.46E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=42.43T^-0.745        

  

 Estimate Std. Error t value Pr(>|t|)      

A 42.434 6.27E-01 67.65 7.02E-10      

B 0.7451 1.06E-02 70.18 5.63E-10      
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Model info for (f) Fut. EnsembleMax.: R=44.07T^-0.743          

 Estimate Std. Error t value Pr(>|t|)      

A 44.068 6.11E-01 72.14 4.77E-10      

B 0.7426 9.95E-03 74.59 3.91E-10      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2030S 25-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 117.8 127.843 106.04 146.817 108.5414 127.5805 140.747 142.5017 12 

0.5 80.2 81.032 68.527 90.428 70.2405 80.3015 87.38725 89.7802 12 

1 50.9 50.172 42.07 56.162 43.1727 49.724 54.395 55.8431 12 

3 NA 19.607 14.756 20.96 16.141 18.4915 19.008 20.448 12 

2 29 27.523 23.836 30.714 23.9026 27.207 28.99925 29.6039 12 

6 11.8 10.878 9.654 13.407 10.0499 11.2385 12.18075 13.2519 12 

12 6.7 6.644 4.547 8.201 5.0586 6.7295 6.98975 7.61 12 

24 3.7 3.83 2.882 4.11 3.152 3.6675 3.94 4.0837 12 

Model info for (a) Hist. Gumbel: R=42.81T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 42.812 9.02E-01 47.46 7.84E-08      

B 0.7306 1.51E-02 48.31 7.18E-08      

Model info for (b) Hist. GEV: R=44.3T^-0.765          

 Estimate Std. Error t value Pr(>|t|)      

A 44.303 5.57E-01 79.47 2.67E-10      

B 0.7647 9.05E-03 84.54 1.84E-10      

Model info for (c) Fut. EnsembleMin.: R=36.26T^-0.774          

 Estimate Std. Error t value Pr(>|t|)      

A 36.261 7.92E-01 45.76 7.29E-09      

B 0.7744 1.57E-02 49.29 4.68E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=37.69T^-0.763        

  

 Estimate Std. Error t value Pr(>|t|)      

A 37.692 6.74E-01 55.94 2.19E-09      

B 0.7633 1.28E-02 59.40 1.53E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=50.11T^-0.754        

  

 Estimate Std. Error t value Pr(>|t|)      

A 50.110 5.86E-01 85.45 1.73E-10      

B 0.7541 8.41E-03 89.69 1.29E-10      
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Model info for (f) Fut. EnsembleMax.: R=51.61T^-0.754          

 Estimate Std. Error t value Pr(>|t|)      

A 51.606 5.37E-01 96.14 8.53E-11      

B 0.7544 7.47E-03 100.94 6.37E-11      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2030S 50-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 130.2 147.579 123.069 173.598 124.3123 149.732 161.703 171.8817 12 

0.5 89.1 91.083 77.979 103.662 78.8366 91.3575 98.48125 102.6235 12 

1 56.7 56.803 48.229 65.168 48.8891 57.0165 61.7375 64.4714 12 

3 NA 21.94 15.597 24.012 17.6009 19.959 20.5255 22.924 12 

2 32.2 30.086 26.033 33.079 26.5059 29.8035 32.28025 32.7613 12 

6 13.1 12.168 10.129 17.756 10.8121 12.4545 14.11375 14.3359 12 

12 7.5 7.749 4.869 8.793 5.5888 7.88 8.2745 8.3987 12 

24 4.1 4.285 3.046 4.852 3.4379 3.9655 4.5315 4.7976 12 

Model info for (a) Hist. Gumbel: R=47.45T^-0.729          

 Estimate Std. Error t value Pr(>|t|)      

A 47.450 1.02E+00 46.39 8.79E-08      

B 0.7286 1.55E-02 47.10 8.15E-08      

Model info for (b) Hist. GEV: R=50.72T^-0.771          

 Estimate Std. Error t value Pr(>|t|)      

A 50.718 5.79E-01 87.52 1.50E-10      

B 0.7706 8.21E-03 93.81 9.89E-11      

Model info for (c) Fut. EnsembleMin.: R=40.68T^-0.799          

 Estimate Std. Error t value Pr(>|t|)      

A 40.677 8.87E-01 45.88 7.18E-09      

B 0.7989 1.57E-02 50.94 3.84E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=42.33T^-0.777        

  

 Estimate Std. Error t value Pr(>|t|)      

A 42.335 7.00E-01 60.47 1.38E-09      

B 0.7773 1.19E-02 65.36 8.63E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=58.34T^-0.78        

  

 Estimate Std. Error t value Pr(>|t|)      

A 58.338 4.62E-01 126.22 1.67E-11      

B 0.7796 5.70E-03 136.81 1.03E-11      
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Model info for (f) Fut. EnsembleMax.: R=61.41T^-0.75          

 Estimate Std. Error t value Pr(>|t|)      

A 61.410 1.05E+00 58.43 1.69E-09      

B 0.7497 1.23E-02 60.98 1.31E-09      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2030S 100-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 142.5 169.398 141.518 214.311 143.5199 172.714 185.42775 210.5205 12 

0.5 98 101.393 87.794 122.147 88.3648 101.1435 110.85675 120.5205 12 

1 62.5 63.679 54.971 77.567 55.12 63.8285 69.6225 76.47 12 

3 NA 24.352 16.355 27.434 18.9581 21.315 22.69825 25.6273 12 

2 35.3 32.506 28.146 37.24 29.2239 31.611 35.54075 36.7649 12 

6 14.4 13.504 10.516 23.833 11.5271 13.7055 15.298 16.696 12 

12 8.2 9.003 5.183 10.174 6.1548 9.0645 9.35675 9.5846 12 

24 4.5 4.756 3.194 5.716 3.7023 4.355 5.19125 5.642 12 

Model info for (a) Hist. Gumbel: R=51.99T^-0.728          

 Estimate Std. Error t value Pr(>|t|)      

A 51.992 1.16E+00 44.96 1.03E-07      

B 0.7278 1.60E-02 45.60 9.58E-08      

Model info for (b) Hist. GEV: R=57.7T^-0.777          

 Estimate Std. Error t value Pr(>|t|)      

A 57.702 6.87E-01 83.93 1.93E-10      

B 0.7769 8.57E-03 90.68 1.21E-10      

Model info for (c) Fut. EnsembleMin.: R=45.22T^-0.823          

 Estimate Std. Error t value Pr(>|t|)      

A 45.224 1.02E+00 44.29 8.87E-09      

B 0.8232 1.63E-02 50.63 3.98E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=47.62T^-0.796        

  

 Estimate Std. Error t value Pr(>|t|)      

A 47.619 7.05E-01 67.57 7.07E-10      

B 0.7960 1.07E-02 74.74 3.86E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=69.78T^-0.797        

  

 Estimate Std. Error t value Pr(>|t|)      

A 69.777 5.66E-01 123.38 1.91E-11      

B 0.7966 5.83E-03 136.58 1.04E-11      
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Model info for (f) Fut. EnsembleMax.: R=76.08T^-0.747          

 Estimate Std. Error t value Pr(>|t|)      

A 76.079 2.20E+00 34.52 3.94E-08      

B 0.7471 2.08E-02 35.90 3.11E-08      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2050S 2-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 68 66.848 72.518 97.633 72.7623 83.8715 85.21675 89.5375 8 

0.5 44.4 43.748 48.652 63.182 48.9145 55.715 56.13325 58.7881 8 

1 27.5 26.26 29.386 39.352 29.6842 33.5395 34.02325 35.9899 8 

3 NA 11.121 12.297 16.532 12.3873 13.9765 14.2815 15.1005 8 

2 16.4 16.001 17.905 22.414 18.0275 20.1255 20.45675 21.119 8 

6 6.8 6.286 6.098 9.3 6.1288 7.858 8.54675 8.9801 8 

12 3.9 3.434 3.626 5.241 3.6512 4.5065 4.7575 4.9204 8 

24 2.2 2.172 2.402 3.229 2.4195 2.7295 2.7895 2.9497 8 

Model info for (a) Hist. Gumbel: R=24.69T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 24.693 3.48E-01 71.03 1.05E-08      

B 0.7310 1.01E-02 72.35 9.55E-09      

Model info for (b) Hist. GEV: R=23.72T^-0.748          

 Estimate Std. Error t value Pr(>|t|)      

A 23.720 3.44E-01 68.87 6.31E-10      

B 0.7477 1.04E-02 71.69 4.96E-10      

Model info for (c) Fut. EnsembleMin.: R=25.27T^-0.761          

 Estimate Std. Error t value Pr(>|t|)      

A 25.270 5.38E-01 46.95 6.26E-09      

B 0.7608 1.53E-02 49.70 4.45E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=25.39T^-0.76        

  

 Estimate Std. Error t value Pr(>|t|)      

A 25.387 5.49E-01 46.22 6.87E-09      

B 0.7599 1.55E-02 48.87 4.92E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=32.41T^-0.733        

  

 Estimate Std. Error t value Pr(>|t|)      

A 32.409 4.42E-01 73.29 4.34E-10      

B 0.7334 9.79E-03 74.88 3.82E-10      
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Model info for (f) Fut. EnsembleMax.: R=34.92T^-0.742          

 Estimate Std. Error t value Pr(>|t|)      

A 34.921 4.40E-01 79.37 2.69E-10      

B 0.7419 9.05E-03 82.00 2.22E-10      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2050S 5-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 87.9 88.129 95.577 143.638 97.1842 115.517 117.9195 126.5055 8 

0.5 58.7 58.08 63.127 84.253 63.2502 75.598 76.37275 79.2046 8 

1 36.9 35.31 39.016 54.038 39.2274 46.2805 47.11475 49.4495 8 

3 NA 14.599 16.32 23.125 16.4621 17.5255 18.575 20.8409 8 

2 21.5 20.773 22.422 28.105 22.7391 26.493 27.24 27.9195 8 

6 8.8 8.073 8.275 11.895 8.2967 10.5525 11.2195 11.5933 8 

12 5 4.561 5.062 7.806 5.2601 6.317 6.7985 7.2278 8 

24 2.8 2.851 3.188 4.517 3.2153 3.4225 3.62775 4.0704 8 

Model info for (a) Hist. Gumbel: R=31.92T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 31.923 5.73E-01 55.68 3.53E-08      

B 0.7310 1.29E-02 56.72 3.22E-08      

Model info for (b) Hist. GEV: R=31.16T^-0.75          

 Estimate Std. Error t value Pr(>|t|)      

A 31.165 4.80E-01 64.93 8.98E-10      

B 0.7502 1.11E-02 67.80 6.93E-10      

Model info for (c) Fut. EnsembleMin.: R=33.66T^-0.753          

 Estimate Std. Error t value Pr(>|t|)      

A 33.660 5.89E-01 57.16 1.93E-09      

B 0.7531 1.26E-02 59.92 1.45E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=34.19T^-0.754        

  

 Estimate Std. Error t value Pr(>|t|)      

A 34.185 5.59E-01 61.12 1.29E-09      

B 0.7540 1.18E-02 64.14 9.66E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=45.09T^-0.744        

  

 Estimate Std. Error t value Pr(>|t|)      

A 45.091 3.96E-01 113.95 3.08E-11      

B 0.7443 6.30E-03 118.09 2.49E-11      
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Model info for (f) Fut. EnsembleMax.: R=49.73T^-0.765          

 Estimate Std. Error t value Pr(>|t|)      

A 49.728 5.02E-01 99.09 7.12E-11      

B 0.7652 7.25E-03 105.48 4.90E-11      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2050S 10-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 101.1 104.403 116.346 180.977 120.7945 140.5105 144.11675 159.5969 8 

0.5 68.2 67.996 73.907 97.464 74.488 89.2055 91.53 93.5496 8 

1 43.1 41.682 46.693 63.669 46.8428 55.272 57.0255 59.0868 8 

3 NA 17.238 18.773 27.689 19.1251 19.8635 21.60575 25.0871 8 

2 24.8 23.856 25.228 32.233 26.0379 30.254 31.37275 32.2141 8 

6 10.1 9.32 10.186 13.447 10.2637 12.8575 13.07025 13.2069 8 

12 5.8 5.492 6.351 9.871 6.9635 7.6865 8.86125 9.1857 8 

24 3.2 3.367 3.667 5.408 3.7356 3.8795 4.22 4.8998 8 

Model info for (a) Hist. Gumbel: R=36.75T^-0.73          

 Estimate Std. Error t value Pr(>|t|)      

A 36.753 7.12E-01 51.64 5.15E-08      

B 0.7303 1.39E-02 52.56 4.72E-08      

Model info for (b) Hist. GEV: R=36.79T^-0.753          

 Estimate Std. Error t value Pr(>|t|)      

A 36.786 5.18E-01 70.97 5.27E-10      

B 0.7528 1.01E-02 74.35 3.98E-10      

Model info for (c) Fut. EnsembleMin.: R=40.91T^-0.754          

 Estimate Std. Error t value Pr(>|t|)      

A 40.915 5.11E-01 80.07 2.55E-10      

B 0.7541 8.97E-03 84.04 1.91E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=42.42T^-0.755        

  

 Estimate Std. Error t value Pr(>|t|)      

A 42.416 5.27E-01 80.42 2.49E-10      

B 0.7551 8.94E-03 84.50 1.85E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=55.55T^-0.761        

  

 Estimate Std. Error t value Pr(>|t|)      

A 55.554 6.76E-01 82.22 2.18E-10      

B 0.7612 8.74E-03 87.09 1.54E-10      
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Model info for (f) Fut. EnsembleMax.: R=60.99T^-0.784          

 Estimate Std. Error t value Pr(>|t|)      

A 60.991 1.18E+00 51.85 3.46E-09      

B 0.7844 1.39E-02 56.53 2.06E-09      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2050S 25-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 117.8 127.843 151.271 237.772 157.9462 175.1975 187.33125 212.9262 8 

0.5 80.2 81.032 89.429 115.58 90.9725 105.4975 113.138 114.026 8 

1 50.9 50.172 58.251 75.734 58.2692 66.408 71.6275 72.9949 8 

3 NA 20.884 20.675 33.694 21.1811 24.519 26.416 30.7498 8 

2 29 27.523 28.698 39.257 30.4466 34.284 35.24725 37.7695 8 

6 11.8 10.972 13.373 16.884 13.5221 15.088 15.6135 16.5732 8 

12 6.7 6.908 8.525 12.991 9.211 10.5195 12.1425 12.7089 8 

24 3.7 4.079 4.038 6.581 4.1367 4.789 5.159 6.0056 8 

Model info for (a) Hist. Gumbel: R=42.81T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 42.812 9.02E-01 47.46 7.84E-08      

B 0.7306 1.51E-02 48.31 7.18E-08      

Model info for (b) Hist. GEV: R=44.76T^-0.757          

 Estimate Std. Error t value Pr(>|t|)      

A 44.761 5.48E-01 81.73 2.26E-10      

B 0.7572 8.79E-03 86.12 1.65E-10      

Model info for (c) Fut. EnsembleMin.: R=52.66T^-0.761          

 Estimate Std. Error t value Pr(>|t|)      

A 52.660 6.61E-01 79.64 2.64E-10      

B 0.7612 9.02E-03 84.36 1.87E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=54.76T^-0.764        

  

 Estimate Std. Error t value Pr(>|t|)      

A 54.764 8.07E-01 67.85 6.89E-10      

B 0.7640 1.06E-02 72.12 4.78E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=72.85T^-0.773        

  

 Estimate Std. Error t value Pr(>|t|)      

A 72.847 1.59E+00 45.76 7.30E-09      

B 0.7735 1.57E-02 49.22 4.72E-09      
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Model info for (f) Fut. EnsembleMax.: R=78.54T^-0.799          

 Estimate Std. Error t value Pr(>|t|)      

A 78.538 2.22E+00 35.42 3.38E-08      

B 0.7987 2.03E-02 39.31 1.81E-08      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2050S 50-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 130.2 150.152 181.98 288.164 184.283 213.862 228.066 262.9983 8 

0.5 89.1 91.083 102.495 135.791 105.1291 117.2255 126.20775 132.4527 8 

1 56.7 56.803 68.22 84.684 68.3691 74.37 84.363 84.6315 8 

3 NA 23.835 21.883 38.327 22.1238 28.141 31.21875 35.1609 8 

2 32.2 30.086 31.218 44.854 33.3208 36.567 38.249 41.6984 8 

6 13.1 12.256 15.652 20.344 16.0475 16.6025 17.81125 19.9828 8 

12 7.5 8.165 10.645 16.414 10.9299 13.5495 15.47525 15.9422 8 

24 4.1 4.655 4.274 7.486 4.3209 5.4965 6.09725 6.8672 8 

Model info for (a) Hist. Gumbel: R=47.45T^-0.729          

 Estimate Std. Error t value Pr(>|t|)      

A 47.450 1.02E+00 46.39 8.79E-08      

B 0.7286 1.55E-02 47.10 8.15E-08      

Model info for (b) Hist. GEV: R=51.9T^-0.766          

 Estimate Std. Error t value Pr(>|t|)      

A 51.899 6.03E-01 86.06 1.66E-10      

B 0.7664 8.35E-03 91.75 1.13E-10      

Model info for (c) Fut. EnsembleMin.: R=62.69T^-0.769          

 Estimate Std. Error t value Pr(>|t|)      

A 62.687 1.26E+00 49.56 4.52E-09      

B 0.7687 1.45E-02 53.00 3.03E-09      

Model info for (d) Fut. Ensemble10thPercentile: R=63.78T^-0.765        

  

 Estimate Std. Error t value Pr(>|t|)      

A 63.776 1.27E+00 50.24 4.17E-09      

B 0.7654 1.43E-02 53.50 2.86E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=88.94T^-0.782        

  

 Estimate Std. Error t value Pr(>|t|)      

A 88.939 2.60E+00 34.17 4.18E-08      

B 0.7817 2.11E-02 37.14 2.54E-08      
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Model info for (f) Fut. EnsembleMax.: R=94.88T^-0.801          

 Estimate Std. Error t value Pr(>|t|)      

A 94.881 3.25E+00 29.17 1.07E-07      

B 0.8009 2.47E-02 32.46 5.68E-08      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2050S 100-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 142.5 176.418 204.099 346.426 215.0456 257.397 286.71275 323.8391 8 

0.5 98 101.393 116.937 158.387 118.9523 128.862 139.1475 152.9529 8 

1 62.5 63.679 76.417 99.473 76.6312 84.082 94.5515 98.5385 8 

3 NA 26.988 22.758 43.082 22.8826 32.178 36.7605 39.7143 8 

2 35.3 32.506 33.675 50.779 35.2017 39.2375 41.2 45.4513 8 

6 14.4 13.581 17.258 24.45 17.3707 19.6335 21.40625 24.0356 8 

12 8.2 9.617 12.773 21.742 13.1412 16.618 19.529 21.5159 8 

24 4.5 5.271 4.445 8.414 4.4695 6.285 7.1795 7.7567 8 

Model info for (a) Hist. Gumbel: R=51.99T^-0.728          

 Estimate Std. Error t value Pr(>|t|)      

A 51.992 1.16E+00 44.96 1.03E-07      

B 0.7278 1.60E-02 45.60 9.58E-08      

Model info for (b) Hist. GEV: R=60.01T^-0.778          

 Estimate Std. Error t value Pr(>|t|)      

A 60.005 8.80E-01 68.15 6.72E-10      

B 0.7779 1.06E-02 73.71 4.20E-10      

Model info for (c) Fut. EnsembleMin.: R=70.5T^-0.767          

 Estimate Std. Error t value Pr(>|t|)      

A 70.500 1.90E+00 37.17 2.53E-08      

B 0.7668 1.93E-02 39.65 1.72E-08      

Model info for (d) Fut. Ensemble10thPercentile: R=73.1T^-0.778        

  

 Estimate Std. Error t value Pr(>|t|)      

A 73.096 2.08E+00 35.18 3.52E-08      

B 0.7783 2.04E-02 38.07 2.19E-08      

Model info for (e) Fut. Ensemble90thPercentile: R=109.58T^-0.781        

  

 Estimate Std. Error t value Pr(>|t|)      

A 109.576 4.66E+00 23.49 3.90E-07      

B 0.7812 3.06E-02 25.52 2.39E-07      
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Model info for (f) Fut. EnsembleMax.: R=115.04T^-0.795          

 Estimate Std. Error t value Pr(>|t|)      

A 115.041 4.98E+00 23.11 4.30E-07      

B 0.7947 3.11E-02 25.52 2.38E-07      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2090S 2-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 68 66.848 67.77 100.962 68.4804 78.413 87.479 97.016 12 

0.5 44.4 43.748 44.5 65.894 44.8724 51.4505 57.6825 63.5379 12 

1 27.5 26.233 26.684 40.332 26.9129 30.948 35.05425 38.1522 12 

3 NA 11.121 11.932 16.681 11.9791 13.709 14.7515 15.9902 12 

2 16.4 15.791 16.062 23.201 16.2876 18.5585 20.65275 22.914 12 

6 6.8 6.188 6.234 10.145 6.3433 7.4625 8.20475 9.4892 12 

12 3.9 3.434 3.86 5.568 3.8685 4.2125 4.512 5.2437 12 

24 2.2 2.172 2.174 3.258 2.1915 2.5015 2.83125 2.9841 12 

Model info for (a) Hist. Gumbel: R=24.69T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 24.693 3.48E-01 71.03 1.05E-08      

B 0.7310 1.01E-02 72.35 9.55E-09      

Model info for (b) Hist. GEV: R=23.65T^-0.75          

 Estimate Std. Error t value Pr(>|t|)      

A 23.652 3.39E-01 69.84 5.80E-10      

B 0.7498 1.03E-02 72.89 4.49E-10      

Model info for (c) Fut. EnsembleMin.: R=24.23T^-0.742          

 Estimate Std. Error t value Pr(>|t|)      

A 24.234 3.23E-01 75.01 3.78E-10      

B 0.7421 9.57E-03 77.51 3.10E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=24.49T^-0.742        

  

 Estimate Std. Error t value Pr(>|t|)      

A 24.486 3.17E-01 77.14 3.19E-10      

B 0.7421 9.31E-03 79.72 2.62E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=34.74T^-0.741        

  

 Estimate Std. Error t value Pr(>|t|)      

A 34.737 4.88E-01 71.15 5.19E-10      

B 0.7412 1.01E-02 73.44 4.29E-10      
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Model info for (f) Fut. EnsembleMax.: R=36.5T^-0.734          

 Estimate Std. Error t value Pr(>|t|)      

A 36.497 4.80E-01 76.04 3.48E-10      

B 0.7343 9.44E-03 77.78 3.04E-10      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2090S 5-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 87.9 88.129 91.156 138.383 95.7681 106.583 111.99825 129.3324 12 

0.5 58.7 58.08 60.076 86.637 62.4046 68.604 72.33925 85.0228 12 

1 36.9 35.31 36.523 53.847 38.0996 42.141 44.499 51.7572 12 

3 NA 14.351 15.931 20.646 16.1087 16.804 17.7065 18.6584 12 

2 21.5 20.773 21.487 30.764 22.0297 24.128 25.481 28.7324 12 

6 8.8 7.972 8.376 12.586 9.274 9.884 10.84825 11.995 12 

12 5 4.515 4.874 8.267 4.9313 5.3 5.98575 7.1517 12 

24 2.8 2.803 2.867 4.032 2.9698 3.2425 3.37725 3.6468 12 

Model info for (a) Hist. Gumbel: R=31.92T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 31.923 5.73E-01 55.68 3.53E-08      

B 0.7310 1.29E-02 56.72 3.22E-08      

Model info for (b) Hist. GEV: R=31.03T^-0.753          

 Estimate Std. Error t value Pr(>|t|)      

A 31.028 4.93E-01 62.99 1.08E-09      

B 0.7533 1.14E-02 66.04 8.10E-10      

Model info for (c) Fut. EnsembleMin.: R=32.33T^-0.748          

 Estimate Std. Error t value Pr(>|t|)      

A 32.330 4.86E-01 66.55 7.74E-10      

B 0.7481 1.08E-02 69.31 6.07E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=34.06T^-0.746        

  

 Estimate Std. Error t value Pr(>|t|)      

A 34.062 5.13E-01 66.38 7.86E-10      

B 0.7460 1.08E-02 68.94 6.27E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=45.74T^-0.75        

  

 Estimate Std. Error t value Pr(>|t|)      

A 45.736 7.24E-01 63.21 1.05E-09      

B 0.7502 1.14E-02 66.01 8.13E-10      
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Model info for (f) Fut. EnsembleMax.: R=49.22T^-0.746          

 Estimate Std. Error t value Pr(>|t|)      

A 49.218 6.20E-01 79.39 2.69E-10      

B 0.7459 9.05E-03 82.44 2.15E-10      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2090S 10-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 101.1 104.403 112.503 166.863 119.699 127.018 139.5415 155.01 11 

0.5 68.2 67.996 73.271 100.955 78.1179 81.047 87.6975 99.3585 12 

1 43.1 41.682 44.916 63.082 47.9177 49.929 54.59975 61.2248 12 

3 NA 16.609 17.804 22.875 18.3205 19.522 20.723 21.2555 12 

2 24.8 23.856 25.707 35.42 26.7912 28.416 29.121 32.0691 12 

6 10.1 9.22 10.104 15.698 10.6558 11.7285 13.02625 14.0689 12 

12 5.8 5.371 5.572 10.595 5.7003 6.1325 7.27375 8.6905 12 

24 3.2 3.244 3.465 4.468 3.4867 3.813 4.06525 4.1557 12 

Model info for (a) Hist. Gumbel: R=36.75T^-0.73          

 Estimate Std. Error t value Pr(>|t|)      

A 36.753 7.12E-01 51.64 5.15E-08      

B 0.7303 1.39E-02 52.56 4.72E-08      

Model info for (b) Hist. GEV: R=36.53T^-0.758          

 Estimate Std. Error t value Pr(>|t|)      

A 36.534 5.41E-01 67.47 7.13E-10      

B 0.7577 1.07E-02 71.14 5.19E-10      

Model info for (c) Fut. EnsembleMin.: R=39.29T^-0.759          

 Estimate Std. Error t value Pr(>|t|)      

A 39.294 6.14E-01 63.99 9.79E-10      

B 0.7591 1.12E-02 67.59 7.06E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=41.42T^-0.766        

  

 Estimate Std. Error t value Pr(>|t|)      

A 41.419 7.20E-01 57.51 1.86E-09      

B 0.7659 1.25E-02 61.27 1.27E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=54.43T^-0.755        

  

 Estimate Std. Error t value Pr(>|t|)      

A 54.429 8.31E-01 65.48 8.53E-10      

B 0.7552 1.10E-02 68.82 6.33E-10      
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Model info for (f) Fut. EnsembleMax.: R=59.72T^-0.741          

 Estimate Std. Error t value Pr(>|t|)      

A 59.721 9.90E-01 60.33 1.39E-09      

B 0.7412 1.19E-02 62.27 1.15E-09      

  



 
69

---------------------------------------------------------          

 WINDSOR AIRPORT 2090S 25-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 117.8 127.843 142.983 207.699 148.086 165.4655 185.70325 196.3266 12 

0.5 80.2 81.032 90.629 129.068 93.9484 106.034 114.62675 120.0269 12 

1 50.9 50.172 56.114 82.178 58.3428 66.151 72.3915 75.0216 12 

3 NA 19.607 19.714 30.909 19.7253 22.815 25.55275 27.1075 12 

2 29 27.523 30.776 40.831 30.9041 34.3115 36.501 38.6892 12 

6 11.8 10.878 12.233 25.007 12.4752 13.812 15.66725 19.7717 12 

12 6.7 6.644 6.403 14.34 6.5374 7.3095 9.3715 11.0236 12 

24 3.7 3.83 3.855 6.037 3.9024 4.7535 5.191 5.3008 12 

Model info for (a) Hist. Gumbel: R=42.81T^-0.731          

 Estimate Std. Error t value Pr(>|t|)      

A 42.812 9.02E-01 47.46 7.84E-08      

B 0.7306 1.51E-02 48.31 7.18E-08      

Model info for (b) Hist. GEV: R=44.3T^-0.765          

 Estimate Std. Error t value Pr(>|t|)      

A 44.303 5.57E-01 79.47 2.67E-10      

B 0.7647 9.05E-03 84.54 1.84E-10      

Model info for (c) Fut. EnsembleMin.: R=48.46T^-0.781          

 Estimate Std. Error t value Pr(>|t|)      

A 48.456 8.09E-01 59.87 1.46E-09      

B 0.7808 1.20E-02 64.99 8.92E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=49.88T^-0.785        

  

 Estimate Std. Error t value Pr(>|t|)      

A 49.885 8.69E-01 57.41 1.88E-09      

B 0.7852 1.25E-02 62.66 1.11E-09      

Model info for (e) Fut. Ensemble90thPercentile: R=70.04T^-0.744        

  

 Estimate Std. Error t value Pr(>|t|)      

A 70.042 1.06E+00 66.12 8.05E-10      

B 0.7436 1.09E-02 68.46 6.53E-10      
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Model info for (f) Fut. EnsembleMax.: R=78.86T^-0.699          

 Estimate Std. Error t value Pr(>|t|)      

A 78.864 1.79E+00 44.13 9.07E-09      

B 0.6987 1.62E-02 43.04 1.05E-08      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2090S 50-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 130.2 147.579 162.27 253.099 168.8436 195.015 225.2655 243.0523 12 

0.5 89.1 91.083 100.151 175.488 104.1469 124.946 138.825 145.3434 12 

1 56.7 56.803 62.457 113.535 65.2897 78.885 87.83175 93.3009 12 

3 NA 21.94 20.035 42.099 20.2296 24.777 29.571 33.6495 12 

2 32.2 30.086 33.081 48.729 33.2731 38.8795 42.26975 46.2053 12 

6 13.1 12.168 13.31 36.079 13.6784 15.6715 17.00925 27.8985 12 

12 7.5 7.749 6.82 17.845 7.3027 8.2865 11.23975 13.1128 12 

24 4.1 4.285 4.045 8.223 4.1873 5.3145 6.507 6.8223 12 

Model info for (a) Hist. Gumbel: R=47.45T^-0.729          

 Estimate Std. Error t value Pr(>|t|)      

A 47.450 1.02E+00 46.39 8.79E-08      

B 0.7286 1.55E-02 47.10 8.15E-08      

Model info for (b) Hist. GEV: R=50.72T^-0.771          

 Estimate Std. Error t value Pr(>|t|)      

A 50.718 5.79E-01 87.52 1.50E-10      

B 0.7706 8.21E-03 93.81 9.89E-11      

Model info for (c) Fut. EnsembleMin.: R=53.81T^-0.796          

 Estimate Std. Error t value Pr(>|t|)      

A 53.814 8.90E-01 60.43 1.38E-09      

B 0.7964 1.19E-02 66.88 7.51E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=55.99T^-0.796        

  

 Estimate Std. Error t value Pr(>|t|)      

A 55.991 8.82E-01 63.50 1.03E-09      

B 0.7964 1.13E-02 70.28 5.58E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=88.56T^-0.728        

  

 Estimate Std. Error t value Pr(>|t|)      

A 88.555 2.18E+00 40.55 1.50E-08      

B 0.7284 1.77E-02 41.16 1.38E-08      
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Model info for (f) Fut. EnsembleMax.: R=100.41T^-0.667          

 Estimate Std. Error t value Pr(>|t|)      

A 100.410 3.21E+00 31.33 7.03E-08      

B 0.6674 2.28E-02 29.26 1.06E-07      
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---------------------------------------------------------          

 WINDSOR AIRPORT 2090S 100-YEAR EVENT       

Duration OBS_GUM OBS_GEV MIN MAX P10 P50 P75 P90 EMS 

0.25 142.5 169.398 183.324 329.133 191.9028 229.7055 272.15275 304.7169 12 

0.5 98 101.393 109.728 242.499 114.7103 141.341 171.04975 190.9384 12 

1 62.5 63.679 68.914 159.401 72.5052 89.9915 110.007 124.3782 12 

3 NA 24.352 20.253 58.47 20.4114 26.579 34.85375 43.0457 12 

2 35.3 32.506 35.179 61.663 35.511 44.079 48.437 57.1592 12 

6 14.4 13.504 14.303 52.563 14.7382 17.8215 18.98825 40.1219 12 

12 8.2 9.003 7.192 22.088 8.1159 9.423 13.45875 15.5394 12 

24 4.5 4.756 4.2 11.42 4.4747 6.1275 8.03725 9.0031 12 

Model info for (a) Hist. Gumbel: R=51.99T^-0.728          

 Estimate Std. Error t value Pr(>|t|)      

A 51.992 1.16E+00 44.96 1.03E-07      

B 0.7278 1.60E-02 45.60 9.58E-08      

Model info for (b) Hist. GEV: R=57.7T^-0.777          

 Estimate Std. Error t value Pr(>|t|)      

A 57.702 6.87E-01 83.93 1.93E-10      

B 0.7769 8.57E-03 90.68 1.21E-10      

Model info for (c) Fut. EnsembleMin.: R=59.33T^-0.814          

 Estimate Std. Error t value Pr(>|t|)      

A 59.331 9.76E-01 60.81 1.33E-09      

B 0.8140 1.18E-02 68.75 6.37E-10      

Model info for (d) Fut. Ensemble10thPercentile: R=62.44T^-0.81        

  

 Estimate Std. Error t value Pr(>|t|)      

A 62.438 9.04E-01 69.10 6.18E-10      

B 0.8101 1.04E-02 77.76 3.05E-10      

Model info for (e) Fut. Ensemble90thPercentile: R=114.02T^-0.709        

  

 Estimate Std. Error t value Pr(>|t|)      

A 114.020 4.30E+00 26.53 1.89E-07      

B 0.7094 2.70E-02 26.25 2.02E-07      
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Model info for (f) Fut. EnsembleMax.: R=133.51T^-0.652          

 Estimate Std. Error t value Pr(>|t|)      

A 133.508 5.63E+00 23.71 3.70E-07      

B 0.6517 3.01E-02 21.65 6.33E-07      


	IDF-Comparison-Addendum-Report Final_Mar02.2016
	Future IDF Curve Comparison Report
	Acknowledgements
	Disclaimer
	Executive Summary
	Background and Need
	Study Objectives and Methods
	Results
	Implications for Water Management and Practitioners

	Contents
	Figures
	Tables
	1. Introduction
	1.1. Partnership
	1.2. Background
	1.3. Objectives

	2. Study Areas
	3. Methods and Datasets
	3.1. Overall approach
	3.2. Short, medium and long duration rainfall records
	3.3. Comparison of distribution density functions
	3.4. Future climate datasets and downscaling methods
	3.4.1. Future Datasets
	3.4.2. Downscaling Methods


	4. Results
	4.1. Identified distributions
	4.2. Current period estimates
	4.3. Future Projections

	5. Discussion and Conclusions
	6. recommendations
	References
	7. Appendix 1: Summary of literature review
	8. Appendix 2: Trend Analysis Results
	9. Appendix 3: Distributions and selection criteria

	IDFComparison_AppendixA-Final
	IDFComparison_AppendixB-Final

